TASK: PA19

CDRL: S007
28 June 1996
INFORMAL TECHNICAL DATA
_ For
SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Domain Architecture-Based Generation for Ada Reuse
(DAGAR) Guidebook
Version 1.0

STARS-PA19-S007/001/00
28 June 1996

Data Type: Informal Technical Data
CONTRACT NO. F19628-93-C-0130

Prepared for:
Electronic Systems Center
Air Force Systems Command, USAF
Hanscom, AFB, MA 01731-2816

Prepared by:
Lockheed Martin Tactical Defense Systems
9255 Wellington Road
Manassas, VA 22110

Distribution Statement “A”
per DoD Directive 5230.24
Authorized for public release; Distribution is unlimited.

19970220 068 =

TASK: PA19
CDRL: S007
28 June 1996

Data Reference: STARS-PA19-S007/001/00
INFORMAL TECHNICAL DATA

Domain Architecture-Based Generation for Ada Reuse
(DAGAR) Guidebook
Version 1.0

Distribution Statement “A”
per DoD Directive 5230.24
Authorized for public release; Distribution is unlimited.

This document, developed under the Software Technology for Adaptable, Reliable Systems
(STARS) program, is approved for release under Distribution “A” of the Scientific and Technical
Information Program Classification Scheme (DoD Directive 5230.24) unless otherwise indicated.
Sponsored by the U.S. Defense Advanced Research Projects Agency (DARPA) under contract
F19628-93-C-0130, the STARS program is supported by the military services, SEI, and MITRE,
with he U.S. Air Force as the executive contracting agent. The information identified herein is sub-
ject to change. For further information, contact the authors at the following mailer address:
helpdesk @stars.reston.paramax.com.

Permission to use, copy, modify, and comment on this document for purposes stated under Distri-
bution “A” and without fee is hereby granted, provided that this notice appears in each whole or
partial copy. This document retains Contractor indemnification to The Government regarding
copyrights pursuant to the above referenced STARS contract. The Government disclaims all re-
sponsibility against liability, including costs and expenses for violation of proprietary rights, or
copyrights arising out of the creation or use of this document.

The contents of this document constitute technical information developed for internal Government
use. The Government does not guarantee the accuracy of the contents and does not sponsor the re-
lease to third parties whether engaged in performance of a Government contract or subcontract or
otherwise. The Government further disallows any liability for damages incurred as the result of the
dissemination of this information.

In addition, the Government (prime contractor or its subcontractor) disclaims all warranties with
regard to this document, including all implied warranties of merchantability and fitness, and in no
event shall the Government (prim contractor or its subcontractor) be liable for any special, indirect
or consequential damages or any damages whatsoever resulting from the loss of use, data, or prof-
its, whether in action of contract, negligence or other tortious action, arising in connection with the
use of this document.

!

TASK: PA19

CDRL: S007
28 June 1996
~ Data Reference: STARS-PA19-S007/001/00
INFORMAL TECHNICAL DATA
Domain Architecture-Based Generation for Ada Reuse
(DAGAR) Guidebook
Version 1.0

Principal Author(s):

(sl Mlnglin /8 ¢

Carol Klingler 7 Date
James Solderitsch, WPL Laboratories, Inc. Date
Approvals:

\f&u' £ 445’79/%\ Y YIANA
Program Manager Teri E Payton Date

(Signatures on File)

TASK: PA19

CDRL: S007
28 June 1996
‘Data Reference: STARS-PA19-S007/001/00
INFORMAL TECHNICAL DATA
Domain Architecture-Based Generation for Ada Reuse
(DAGAR) Guidebook
Version 1.0

Abstract

This guidebook describes the Domain Architecture-Based Generation for Ada Reuse (DAGAR)
domain architecture and implementation development method. DAGAR has been developed to
provide a repeatable, documented method for domain architecture engineering. The method is
consistent with the Organization Domain Modeling (ODM) domain engineering method and can
be used to support the definition of an asset base architecture and implementation of assets within
ODM. The EDGE/Ada (Enhanced Domain Generation Environment for Ada) toolset provides
integrated support for all phases of DAGAR, including automated system generation based on
choices selected by the application engineer.

The primary purposes of this guidebook are to:

 Provide a definitive DAGAR reference document which promotes public understanding of
the method and its applicability through in-depth descriptions of DAGAR concepts, pro-
cesses, and workproducts.

» Provide substantial practical guidance for using the method by describing DAGAR activities
and offering examples to get practitioners started.

Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

28 June 1996 Informal Technical Data

5. FUNDING NUMBERS

F19628-93-C-0130

4. TITLE AND SUBTITLE
Domain Architecture-Based Generation for Ada Reuse (DAGAR)
Guidebook Version 1.0

6. AUTHOR(S)

Carol Klingler
James Solderitsch

8. PERFORMING ORGANIZATION
REPORT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Lockheed Martin Tactical Defense Systems
9255 Wellington Road
Manassas, VA 22110-4121

Document Number
STARS-PA19-S007/001/00

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

S007

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Department of the Air Force
ESC/ENS
Hanscom AFB, MA 01731-2816

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution “A”

13. ABSTRACT (Maximum 200 words)

This guidebook describes the Domain Architecture-Based Generation for Ada Reuse (DAGAR) domain architecture and
implementation development method. DAGAR has been developed to provide a repeatable, documented method for
domain architecture engineering. The method is consistent with the Organization Domain Modeling (ODM) domain engi-
neering method and can be used to support the definition of an asset base architecture and implementation of assets within
ODM. The EDGE/Ada (Enhanced Domain Generation Environment for Ada) toolset provides integrated support for all
phases of DAGAR, including automated system generation based on choices selected by the application engineer.

The primary purposes of this guidebook are to:

« Provide a definitive DAGAR reference document which promotes public understanding of the method and its appli-
cability through in-depth descriptions of DAGAR concepts, processes, and workproducts.

« Provide substantial practical guidance for using the method by describing DAGAR activities and offering examples
to get practitioners started. '

15. NUMBER OF PAGES

146

14. SUBJECT TERMS

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassiﬁed

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

SAR

28 June 1996 STARS-PA19-5007/001/00

TASK: PA19
CDRL: S007
28 June 1996

Data Reference: STARS-PA19-S007/001/00
INFORMAL TECHNICAL REPORT

Domain Architecture-Based Generation for Ada Reuse
(DAGAR) Guidebook

Version 1.0

Table of Contents
Prologueccciiiiiiiiiiiiiiiireienennnnnns ceseeess Xl
PartI: Introductioncoveveeeenennes e AP |
1.0 GuidebooK OVerVIeW .o v vvviiiitttereeeeeeeeoneoneoosonsoassssans 1
1.1 Purpose and Scope 1
T.2AUdIENCEo 1
1.3 Benefits . ..ot 2
1.4 Guidebook Organizationt 3
1.5 How to Read the Guidebook 3
2.0 DAGARBackgroundcciiiiiiiiiiiiniintencecnrnncecnnns 5
2T OMIEINS . .o 5
2.2 MOUVALIONot e 6
2. 3 O eCtIVES . . ittt e e 6
2.4 Scope and Applicability 6
2.5 Relationship to Other Products 7
2.6 Applications ToDate i 8
3.0DAGAR Core Conceptscocvoveereeesesssscesscnsssssssncnes 11
3.1 Domain Engineering Conceptscoiiiinininenen... 11
3.2 Key DAGAR Definitions 13
3.3The EDGE/Adatoolset 14
Part II: DAGAR Processesand Productscccvveen....17
40The DAGAR ProcCesS . coooveeteeeeeeeeenoeoesseocossocssscosocenes 23
5.0 Define Asset Base Architecturecceeeeeeeeeeececeosencenns 29
5.1 Develop Top Level Architecture F N 32
5.1.1 Develop Architecture Specification it 34
5.1.2 Create Architecture Diagrams ittt 40
5.2 Develop Realm Descriptions it 45
5.3 Develop Architecture Documentation and Test Materials 50

vii

STARS-PA19-5007/001/00

6.0 Implement Asset Baseccoiiieiiiiiiiiiiiiiiiiiiiiiiiinnes 55
6.1 Plan Asset Base Implementation 59
6.2 Implement ASSELSt 67
6.2.1 Develop Component Specifications 70
6.2.2 Develop Component Bodies 74
6.2.3 Develop Asset Documentation and Test Materials 79
6.3 Implement Infrastructure SO 84
7.OApPPly Asset Basec.oviiiiiiiiciiiitttiittiiititnitteoaeens 91
7.1 Plan Application of AssetBase 95
7.2 Compose SUDSYSIEIMNottt 99
7.3 Generate Subsystem Implementation 104
7.4 Apply Test Casesot 108
7.5 Tailor Documentationcuoininiirmineanennnenenenonnn 111
Part III: Applying DAGARcciiiiiiiiiiiiinnennnns 115
8.0 DAGAR as a Supporting Method of ODMcceieevnnnenen 117
8.1 The ODM Domain Engineering Life Cycle 117
8.2 How DAGAR supports ODM, 117
8.3 Tailoring ODM for use with DAGAR 119
Appendix A: DAGAR ProcessModel 123
References .o vveeeeeeeessssssssesecacocaccssossccssncns 133

viii

TASK: PA19
CDRL: S007
28 June 1996

Data Reference: STARS-PA19-5007/001/00
INFORMAL TECHNICAL REPORT
Domain Architecture-Based Generation for Ada Reuse

(DAGAR) Guidebook
Version 1.0
List of Exhibits

1. STARS Reuse Whole Product Technology Layers 7
2. Demonstration Project Domain Engineering Technical Approach 9
3. Army CECOM Software Engineering Directorate ProductLines 11
4. Product-Line Developmentttt 12
5. ELPA Architecture Summary Diagramoiiiuiiiniiiininnannn 14
6. EDGE/Ada GUIMain Windowttt 15
7. EDGE/Ada Utilities Pull Down Menu 16
8. DAGAR Process Treeottt e i 17
9. Example Process Tree Embedded within a Process Description Section 18
10. STARS Conceptual Framework for Reuse Processes (CFRP) 23
11. Scope of DAGAR Processes withinthe CFRP 25
12. DAGAR IDEFOQ Context Diagramuutiuenitinnennnenneenans 26
13. DAGAR IDEFO Diagramcouiutninit ittty 27
14. Define Asset Base Architecture Process Tree 29
15. Define Asset Base Architecture IDEFO Diagramt 30
16. Develop Top Level Architecture Process Tree i it 32
17. Develop Top Level Architecture IDEFO Diagram 33
18. Develop Architecture Specification Process Tree 35
19. Partial Architecture Specificationttt 36
20. Create Architecture Diagrams Process Tree oo, 40
21. ELPA Architecture Summary Diagramc.iuuitintnt e 42
22. SemWeb Architecture Summary Diagram il 44
23. Develop Realm Descriptions Process Tree o it 45
24. Partial Matrix Processing Services Realm Description 46
25. Develop Architecture Documentation and Test Materials Process Tree 50
26. Implement Asset Base Process Tree o i, 55
27. Implement Asset Base IDEFO Diagram i, 56
28. Plan Asset Base Implementation Process Tree 59
29. Implement Assets Process Tree 67
30. Implement Assets IDEFODiagramttt 68
31. Develop Component Specifications Process Tree c.coviin... 70
32. Complete Matrix Component Specificationc.vuieuniniunennen.. 71
33. Develop Component Bodies Process Tree 75
34. Partial Matrix Component Body 76

ix

TASK: PA19
CDRL: S007
28 June 1996

v

~ Data Reference: STARS-PA19-S007/001/00 .
INFORMAL TECHNICAL REPORT
Domain Architecture-Based Generation for Ada Reuse

(DAGAR) Guidebook
Version 1.0

List of Exhibits
35. Develop Asset Documentation and Test Materials Process Tree 79
36. Implement Infrastructure Process Tree i 84
37. Apply Asset Base Process Tree i 91
38. Apply Asset Base IDEFO Diagramttt 92
39. Plan Application of Asset Base Process Treeot 95
40. Compose Subsystem Process Tree it 99
41. Sample set of Subsystem Equations oo, 100
42. ACA and GLUE applied to Matrix Component Selection 102
43. Generate Subsystem Implementation Process Tree 104
44. Generated Ada Matrix Package Spec il 106
45. Generated Ada Matrix Package Body i I 107
46. Apply Test Cases Process Tree 108 .
47. Tailor Documentation Process Tree i, 111
48. DAGAR as a supporting method of ODMuuiniininninnaninnann .. 118

STARS-PA19-S007/001/00 Prologue

Prologue

This document is version 1.0 of the Domain Architecture-Based Generation for Ada Reuse
(DAGAR) Guidebook. The guidebook describes the DAGAR domain architecture engineering
method. The DAGAR method was developed on the Software Technology for Adaptable, Reli-
able Systems (STARS) program, funded by the U.S. Department of Defense (DoD) Defense
Advanced Research Projects Agency (DARPA).

The principal author of the guidebook were Carol Klingler of Lockheed Martin Tactical Defense
Systems and James Solderitsch of WPL Laboratories, Inc. The DAGAR method is based on the

method used for developing a domain architecture on the Army/Lockheed Martin STARS Dem-
onstration Project.

We strongly encourage trial use of DAGAR and solicit reader review and comments. To submit
comments on the guidebook, to learn more about DAGAR, or to discuss how to obtain support in
applying it please contact:

Carol D. Klingler
Lockheed Martin Tactical Defense Systems
9255 Wellington Road
Manassas, VA 22110
Phone: (703) 367-1347
Fax: (703) 367-1389
E-mail: klingler @stars.reston.unisysgsg.com

xi

Prologue STARS-PA19-S007/001/00

xii

STARS-PA19-S007/001/00 1.0 Introduction
Part I: Introduction

1.0 Guidebook Overview

This guidebook describes the Domain Architecture-Based Generation for Ada Reuse (DAGAR)
domain architecture engineering method. DAGAR has been developed to provide a repeatable,
documented method for domain architecture engineering. The method is consistent with the Orga-
nization Domain Modeling (ODM) domain engineering method, Version 1.0 [20] and can be used
to support the definition of an asset base architecture and implementation of assets within ODM.
DAGAR also supports selection of assets for an application. The EDGE/Ada (Enhanced Domain
Generation Environment for Ada) toolset provides integrated support for all phases of DAGAR,
including automated system generation based on choices selected by the application engineer.

1.1 Purpose and Scope

The primary purposes of this guidebook are to:

* Provide a definitive DAGAR reference document which promotes public understanding of
the method and its applicability through in-depth descriptions of DAGAR concepts, pro-
cesses, and workproducts.

* Provide substantial practical guidance for using the method by describing DAGAR activities
and offering examples to get practitioners started.

The guidebook is not directly intended to do the following:
* Provide detailed guidance on the use of the EDGE/Ada tool to support the DAGAR process. .

* Provide extensive justification and rationale for reuse, or domain architecture engineering, in
general or for the DAGAR domain architecture engineering approach in particular.

* Define the specific role of DAGAR within an overall software engineering process or life
cycle.

* Compare DAGAR with other reuse methods or processes (although it may be useful in help-
ing the reader to draw such comparisons).

1.2 Audience

This guidebook is targeted to readers having one or more of the following roles in their organiza-
tions:

* Program/Project Planner — Responsible for planning the objectives, strategy, processes,
infrastructure, and resources for software engineering programs or projects. Interested in
incorporating systematic, domain-specific reuse into those programs/projects.

* Reuse Advocate — Responsible for keeping abreast of reuse concepts, technology, and trends
and promoting the establishment/improvement of reuse capabilities and practices within an
organization. Interested in understanding how new concepts, processes, methods, and tools
can be applied to accelerate reuse adoption.

1.3 Benefits STARS-PA19-5007/001/00

Process Engineer — Responsible for defining, instantiating, tailoring, installing, automating,
monitoring, administering, and evolving software engineering process models. Interested in
defining reuse processes or integrating them with overall life cycle process models.

Domain Engineer — Responsible for scoping and modeling domains of interest to an organi-
zation, designing architectures for these domains, and implementing collections of assets
(“asset bases”) conforming to the architectures that can be reused in multiple application sys-
tems. Interested in learning to apply domain engineering concepts, processes, methods, and
tools.

Application Engineer — Responsible for developing applications that make use of domain
assets. Interested in learning to apply concepts, processes, methods, and tools for selecting

assets.

Architecture Engineer — Responsible for developing generic architectures for families of
systems (“product lines”). Interested in leaming to apply domain architecture engineering to
develop a generic architecture that captures the commonality among the systems, while still

allowing for variability across the systems.

1.3 Benefits

By reading this guidebook, various segments of the audience should be better able to do some or
all of the following:

Understand key DAGAR concepts, including:

— The DAGAR process flow from Define Asset Base Architecture --> Implement Asset
Base --> Apply Asset Base, the reasoning for this flow, and the key process steps
involved

— The importance of an asset base architecture in the development of an asset base for a
domain, and the differences between asset base architectures and system architectures.

Assess and communicate the benefits and implications of applying DAGAR concepts, e.g.:
— Opportunities where domain architecture engineering may be useful

— Value of DAGAR methods and processes in relation to other software engineering meth-
ods, processes, and tools

— Value of the EDGE/Ada toolset in supporting the application of DAGAR.
— Ways DAGAR can be tailored and integrated to meet an organization's needs

Decide whether or not to explore DAGAR further

In conjunction with further reading, training, and consultation, the guidebook should enable read-
ers to: _

Assess their organization's receptivity to applying DAGAR and the EDGE/Ada toolset

Initiate, plan, manage, and perform domain architecture engineering project using DAGAR

STARS-PA19-S007/001/00 1.4 Guidebook Organization

1.4 Guidebook Organization

The body of the guidebook is organized into three major parts:
¢ Part I: Introduction

— Section 1: Document Overview (this section) — Defines the purpose, scope, and audi-
ence of the document.

— Section 2: DAGAR Background — Describes the factors that motivated the development
of DAGAR, the context in which it was developed, and how it has been applied.

— Section 3: DAGAR Core Concepts — Explains the concepts that provide a foundation for:
DAGAR.

e Part II: DAGAR Processes and Products

— Section 4: DAGAR Life Cycle — Describes the overall DAGAR process in terms of a
process model.

— Section 5: Define Asset Base Architecture— Describes the DAGAR processes involved
in defining the architecture for a domain asset base.

— Section 6: Implement Asset Base — Describes the DAGAR processes involved in imple-
menting domain assets within the asset base.

— Section 7: Apply Asset Base — Describes the DAGAR processes involved in selecting
assets from the asset base for a particular application by making selections within the
asset base architecture.

-» Part III: Applying ODM

— Section 8: DAGAR as a Supporting Method of ODM — Describes how DAGAR pro-
vides support for the Define Asset Base Architecture and Implement Asset Base sub-
phases of the ODM domain engineering method.

The guidebook also includes the following supplementary material:

* Appendix A: DAGAR Process Model — A graphical view of the DAGAR process model,
expressed in the IDEF notation. (The IDEF, diagrams are also embedded within the process
descriptions in Part II.)

* References — Bibliographic entries for all documents referenced in the gﬁidebook.

1.5 How to Read the Guidebook

Each segment of the audience has different needs and interests and will thus benefit most from
different portions of the guidebook. All segments of the audience should read PartI to gain a basic
understanding of the method. The Program/Project Planner and the Process Engineer should read
Part III to gain general insight into how the method can be applied. The Process Engineer and the
Domain Engineer should read Part I and the appendices to learn about the DAGAR processes
and work products in detail, but from differing perspectives: the Process Engineer to gain insight
into tailoring and integrating the DAGAR process to support domain architecture engineering,
and the Domain Engineer to learn how the process can be enacted to produce and apply reusable
domain assets.

1.5 How to Read the Guidebook STARS-PA19-5007/001/00

Although the guidebook can be read sequentially from beginning to end, it has been structured to
support alternative reading styles. As indicated in the previous paragraph, Part I should be read
first, but Parts II and III can be read independently. Furthermore, the sections within Parts II and
* I need not be read in a strictly sequential order. This is due in part to the fact that the guidebook
was developed in accordance with the Lockheed Martin Tactical Defense Systems STARS Pro-
cess Definition Process, which imposes a clear discipline for structuring and presenting process
information. The structure of Part II mirrors the hierarchical structure of the DAGAR process
model, as depicted in graphical process trees and IDEF, diagrams. This structure makes it easy to
find and read descriptions of specific portions of the process model. In addition, the sections in
Part II have a well-defined internal structure that enables them to be read and understood rela-
tively easily without a global understanding of the process. In practice, however, it is useful to
read about a process in conjunction with the processes that surround it, including its parent pro-
cesses. Further guidance for how to read and interpret the process descriptions is provided in the
introduction to Part II.

Another important aspect of the guidebook structure is the treatment of key DAGAR terms and
workproducts. When a key term is first introduced in the guidebook, it appears in a bold italic
typeface and is defined at that point.

The DAGAR workproducts and data items (all of which are represented as data flows in the
IDEF,) diagrams) appear in a SMALL CAPS typeface wherever they are referenced in the docu-

ment.

STARS-PA19-S007/001/00 2.0 DAGAR Background

2.0 DAGAR Background
2.1. Origins

DAGAR is based on an adaptation and implementation of the GenVoca model of hierarchical
software decomposition and generation developed by Dr. Don Batory and colleagues at the Uni-
vers1ty of Texas [1], [2], and [5]. The approach has been demonstrated in several domains includ-
ing-data structures, communication protocols and avionics ([3], [13], [4]). The GenVoca
implementation in the avionics domain was sponsored by the DARPA Domain Specific Software
Architectures (DSSA) program.

The word GenVoca, a partial concatenation of the words Genesis and Avoca (the names of two
software generation systems independently developed by Don Batory and Sean O’Malley of the
University of Arizona [4]), identifies a software development process which features an expanded
view of software systems as hierarchical decompositions. Interpreting software systems as such
decompositions is not new. Notable investigators who have presented variations of this strategy
include D. Parnas, A. Habemann and J. Goguen ([12], [7] and [6]). But, GenVoca is perhaps the
best description of a view and explanation of this approach that appears to be practical and appli-
cable through the use of integrated software generation techniques.

Rather than proposing that software systems be constructed through the use of single generic
architectures within which components can be selected at fixed points within the architectural
framework (the leaves of a software hierarchy), GenVoca permits a highly tailorable hierarchy
where the number of interior branches — the essential structure of the architectural framework —
is adjustable along with the components which can be selected to fill slots at the leaves of the hier-
archy. GenVoca components are defined using parametrization options that are not provided in
programming languages in common use today including Ada, C and C++. DAGAR’s chosen
implementation language is Ada and the EDGE/Ada toolset extends Ada to provide the needed
language features. DAGAR components as interpreted by the toolset resemble Ada packages that’
implement an abstract interface that extends the concept of an Ada package specification.

The other projects that have elected to adopt a GenVoca-like approach, and Batory’s own analyti-
cal efforts, suggest that the basic properties of GenVoca are domain-independent. Architectural
methods which rely on the availability of a large collection of modules to package their coverage
of a particular application domain are not easily extended as new features are added to the
domain. Such methods are not inherently scalable. Contrastingly, GenVoca (and now DAGAR)
offers a generative approach by which a small number of highly parameterizable components can
be configured automatically to provide a given set of features for the application domain. The
addition of new features means small-scale adjustments to some of the components with resulting
application systems generated as required. Thus GenVoca is seen to more easily adjust to shifting
requirements and show better scalability.

DAGAR as an‘interpretation of GenVoca consists of three major elements:

* aformal architecture description where the basic categories (realms) of the architecture are
named and related to one another;

* aformal description of the interface for each of the architectural categories (the so-called
realm specifications); and

* for each component in each architectural category, a complete definition of how the compo-
nent implements the basic interface of the category.

2.2 Motivation STARS-PA19-S007/001/00

2.2 Motivation

Software reuse is more effective when systematically planned and managed in the context of spe-
- cific product lines — families of systems that share functionality. Within a product line, domains
(areas of common functionality) are analyzed, and information about the domains is captured,
organized, and evolved through encapsulation in domain models and reusable assets. These assets
can be reused to develop and evolve systems across the product line. The STARS Organization
Domain Modeling (ODM) [20] process is a systematic, yet highly tailorable and configurable
methodology for engineering of domain models and reusable assets — domain engineering. The
ODM modeling life cycle guides the development of descriptive models of legacy systems, arti-
facts, and experience. These descriptive models are transformed into prescriptive specifications of
architecturally-integrated assets. However, ODM does not prescribe a method for developing the
domain architecture and implementation, since these methods should be based on organization
needs and on the domain chosen. The DAGAR (Domain Architecture-based Generation for Ada
Reuse) process was developed by the Loral Defense Systems-East STARS team to meet this need
for a domain architecture and implementation method that supports ODM.

2.3 Objectives
Specific objectives of DAGAR include:

1) To approach system development from a product-line perspective.
2) To allow both commonality and variability to be included in the domain architecture.
3) To implement assets that are consistent with the domain architecture.

4) To allow the generation of asset instances.

2.4 Scope and Applicability

Where DAGAR Can Be Applied:

* Managers and application engineers are open to using generative techniques for domain asset
implementation.

* A domain has been identified where there will be a payoff for creating generic assets and
reusing them.

* An Ada (83/95) implementation is desired. Other languages could easily be supported, but
are not covered in this guidebook.

e The organization is open to using a layered architectural style. A layered architectural style
must be suitable for the domain. This style has been found to be suitable for many domains
including avionics, protocol stacks, electronic warfare, and signal processing.

Where DAGAR May Not Be Applicable:

¢ DAGAR can not be used unless a suitable domain has been identified and modeled. DAGAR
does not include information gathering, domain modeling, etc.

* DAGAR cannot be used if the organization is not committed to performing domain engineer-

STARS-PA19-S007/001/00 2.5 Relationship to Other Products

ing and to the domain engineering/system engineering distinction.

* DAGAR does not include processes for system engineering, or the integration of assets into
the application system.

2.5 Relationship to Other Products

Within the STARS program, DAGAR is being developed and refined as part of the Lockheed
Martin Tactical Defense Systems STARS Reuse Whole Product. The Reuse Whole Product
includes a set of reuse support technologies that the Lockheed Martin Tactical Defense Systems
STARS team has developed, integrated, or used. As part of the Reuse Whole Product effort, these
technologies are being further integrated and augmented with a comprehensive set of training
materials and examples to unify the technologies and make them easier for practitioners to use in
concert. The Reuse Whole Product concept is inspired by Geoffrey Moore’s “Crossing the
Chasm” model of technology transition [11].

The Reuse Whole Product component technologies can be viewed as addressing reuse at differing
levels, or layers, of abstraction. These layers, from highest to lowest level of abstraction, are
termed Concepts, Processes, Methods, and Tools. In general, technology choices made at any
layer will constrain the choices available at the layers below. The Reuse Whole Product reflects a
specific set of technology choices made at each layer, as shown in Exhibit 1.

Level of Abstraction Products
STARS Vision
Concepts Organon Vision
CFRP
CFRP
Processes ROSE
Methods ODM &

Supporting Methods
(including DAGAR)

Tools RLF
KAPTUR
ReEngineer

Exhibit 1. STARS Reuse Whole Product Technology Layers

The technical concepts framing the Reuse Whole Product stem from the STARS vision of product
line-based software development, which integrates the concepts of process-driven, domain-spe-
cific reuse-based software engineering, supported by modern tools and environments. This vision
is augmented in the Reuse Whole Product by the organon concept, which is founded on the
notion of repositories of codified domain knowledge, coupled with proactive technologies to sup-
port the use and evolution of the knowledge.

Within this context, the Reuse Whole Product is scoped specifically to provide integrated process
and tool support for the ODM domain engineering life cycle. DAGAR, as a supporting method of
ODM, provides a domain architecture engineering and asset implementation method. Major tech-
nologies in the Reuse Whole Product besides DAGAR are:

2.6 Applications To Date STARS-PA19-S007/001/00

» STARS Conceptual Framework for Reuse Processes (CFRP) — The CFRP is a consensus
STARS product that provides a conceptual foundation and framework for understanding
domain-specific reuse in terms of the processes involved. [22]

e Reuse-Oriented Software Evolution (ROSE) process model — A CFRP-based life cycle pro-
cess model that partitions software development into Domain Engineering, Asset Manage-
ment, and Application Engineering and emphasizes the role of reuse in software evolution.

* Organization Domain Modeling (ODM) methodology — A systematic, yet highly tailorable -
and configurable methodology for performing domain engineering. ODM provides system-
atic techniques for identifying and selecting strategic domains of focus within product lines,
and incrementally and iteratively scoping the domains to mitigate risk and produce robust,
usable domain models. [20]

* Reuse Library Framework (RLF) domain modeling toolset — A toolset developed by Unisys
and STARS which supports taxonomic domain modeling via semantic network and rule-
based formalisms, and features graphical and outline-based model browsers. [21]

* Capture domain modeling and legacy management toolset — A toolset developed by CTA
and NASA (and now being commercialized by CTA) which graphically supports compara-
tive modeling of system artifacts and domain assets.

* ReEngineer reengineering toolset — A toolset developed by Unisys to support the reengi-
neering of legacy systems via fine-grained analysis and abstraction of system structure.

The Reuse Whole Product effort is underway and will continue through fall 1996. Several evolv-
ing products and supporting materials will be released and available for trial use during that
period (including this guidebook).

Although the above technology choices are sound in the Reuse Whole Product context, DAGAR
can be applied in conjunction with a wide variety of other methods and tools that support the '
domain engineering life cycle. This guidebook has been written to be as independent of other
Reuse Whole Product components as possible.

2.6 Applications To Date

DAGAR has been applied on the Army/Lockheed Martin Tactical Defense Systems STARS Dem-
onstration Project. STARS has worked with the Army, Navy, and Air Force to sponsor three DoD
software engineering projects (termed the STARS “Demonstration Projects”) to assess product
line development in realistic and familiar contexts. Lockheed Martin Tactical Defense Systems
supported the Army STARS Demonstration Project, which was performed by the US Army Com-
munications and Electronics Command (CECOM) Software Engineering Directorate. The project
focused on domain engineering and system reengineering.

The demonstration project applied ODM and DAGAR to the production of a domain model, an
asset base architecture, and assets for the Emitter Location Processing and Analysis (ELPA)
domain. More detailed lessons learned from the demonstration project can be found in [16].

Exhibit 2 provides a pictorial overview of the process followed by the demonstration project and

indicates some of the tools used and the workproducts produced during this effort. A tailored ver-

sion of ODM was used by the demonstration project in completing the three horizontally posi-

tioned ovals — domain planning, domain modeling, and domain architecture modeling. The

DAGAR process was used to perform the top three vertically arranged ovals — domain architec-

ture specification, domain asset implementation, and system implementation. ‘

STARS-PA19-S007/001/00 2.6 Applications To Date

Domain planning, as performed by the demonstration project, included defining domain engineer-
ing objectives and selecting and scoping the domain.

The second phase of domain engineering on the demonstration project was the development of a
domain model. The domain model was based on the logical and physical structure of the domain
as reflected in systems which implemented the domain functionality. The demonstration project’s
domain model included three descriptive representations of the domain — the lexicon model,
descriptive stakeholders model, and descriptive features model. These models were produced
using the Reuse Library Framework (RLF) tool.

The domain model was transformed into a domain architecture model by making informed trade-
offs concerning the features and the physical structure to be supported by the domain architecture.

The primary outputs of the domain architecture modeling phase were adapted versions of the
three models produced during domain modeling.

As the domain architecture specification phase began, the demonstration project found that the
ELPA domain architecture needed to support some degree of variability, in addition to domain
commonality. This was particularly important since the ELPA domain architecture was to be
inserted in legacy systems where a “one size fits all” approach did not work. The demonstration
project chose to develop an ELPA domain architecture specification using a preliminary version
of DAGAR which was developed by the project based on GenVoca, since GenVoca supported a
variable domain architecture.

As developed by the project, the ELPA domain architecture specification included a high-level
architectural specification using the le language along with a set of realm specifications, written in
the extended Ada dialect supported by the EDGE/Ada toolset. The ELPA realms were organized

(DAGAR, EDGE/Ada, Extended Ada)

smmmm-

Re Componen_t~\

1 Specs & Bodies
(k files)

- Bystems
implementation

. - E I N I R G D I SN TR MR W My
Domain Asset e S Y I
/mp/ementatlon Architecture Real";.lspecs I' elpa_serv |
Spec (r files) ! ices_gres
_ ! e

Domain
Architecture
Specification

’

1

: (.e file)
]

PO
¥, *Format specs &
'. bodies which

1 define various

17 instances of

(DAGAR, V' |--=----
EDGE/Ada,? [File:
Extended ! |FLFA-le

Ada) 1 ! reaims
Tornzin D . NeFormat spec Where eFormal specs 6
et omain 1 the basic categorles whichdsfineths | & R4
Plarining Modeling, § (readms)and reaim interfaces Semmam-
e components are 1
y Hentifled and refated ,l

L4

e Cmememeemee -

(RLF, ODM) \
i+ {RLF, OD#)
N
e —— o m oo e e e e e ¢ e
¢ Descriptive representationof * Prescriptive representation of ®

domain commonality and variability features and their logical structure

Lexicon Descriptive Descriptive

Model Stakeholders Features #Mode! Stakeholders Features
Model Model Kode! Model

N oo aramaw e M um oW ek Mk AR e W o w xx A Wo w0 D ox N N MO WS SR X MK Ne O

oo w0 00 om o

))
] H
: Laxicon Prescriptive Frescriptive :
’ 4

.-
L4

Exhibit 2. Demonstration Project Domain Engineering Technical Approach

2.6 Applications To Date STARS-PA19-S007/001/00

into several layers including a services layer, a computation layer and a data access layer. The
computation layer included realms for fix calculations (a “fix” is fundamental ELPA domain
abstraction), coordinate transformations, and required vector and matrix mathematical functions.
Early versions of the EDGE/Ada toolset were employed in processing ELPA realms.

Domain asset development on the demonstration project involved the development of component
specifications and bodies in accordance with the domain architecture. Component specifications
and bodies were also written in the extended Ada dialect supported by the EDGE/Ada toolset.
Components were identified based on choices about how to implement each ELPA realm and how
services provided in lower level realms could be used to complete the implementation of each
ELPA component. Early versions of the EDGE/Ada toolset were employed in processing ELPA
components.

The demonstration project is currently performing system integration, applying the asset base to
generate domain assets and then integrating these domain assets into a legacy system that uses the
domain. This integration will validate the asset base application phase of DAGAR.

10

STARS-PA19-S007/001/00 3.0 DAGAR Core Concepts

INTELLIGENCE-ELECTRONIC WARFARE (IEW) PRODUCT LINE

GRCS4
GRCS3 GRCS2 AaL, TRAFFIC JAM
GRCS1 IRV “r iiblazer. Quickfix CHALS-X

HIU
a

Exhibit 3. Army CECOM Software Engineering Directorate Product Lines

3.0 DAGAR Core Concepts

To establish a frame of reference for understanding DAGAR core concepts, Section 3.1 defines
domain engineering concepts in the context of overall software engineering. Section 3.2 then
describes some key definitions needed to understand DAGAR, and Section 3.3 gives an overview
of the EDGE/Ada toolset that can be used to support the DAGAR process.

3.1 Domain Engineering Concepts

Product-line development involves an approach that emphasizes strategic planning and manage-
ment of related systems within an application family, based on their inherent commonality and
variability. Product-lines provide an explicit boundary and context for the development and reuse
of architectures and assets across systems within the product lines. This differs from the more
opportunistic approach to reuse, i.e., generic reuse libraries, where the context for the develop-
ment of reusable assets is either implicit or unknown.

For example, the Army CECOM (Communication-Electronics Command) Software Engineering
Directorate is responsible for providing software engineering and evolution support to over 240
Army weapon systems, as shown in Exhibit 3. This support has been organized along seven prod-
" uct-lines: Intelligence-Electronic Warfare (IEW), Communications, Command and Control,
Maneuver Control, Tactical Fusion, Fire Support, and Avionics.

Within a product line, domains (areas of common functionality) are analyzed, and information
about the domains is captured, organized, and evolved through encapsulation in domain models,

11

3.1 Domain Engineering Concepts STARS-PA19-S007/001/00

Evolution
Application
Engineering|

Domain
Legacy Base

Legacy
System

Legacy

System Domain Engineering

Exhibit 4. Product-Line Development

domain architectures, and domain assets. These assets can be reused to develop and evolve sys-
tems across the product line. For example, in Exhibit 3 the horizontal bars depict domains in the
IEW Product Line, including Direction Finding, IEW Man Machine Interface, and Emitter Loca-
tion Processing & Analysis. The Army CECOM Software Engineering Directorate is creating
domain models, domain architectures, and domain assets for some of these domains.

The vertical bars in Exhibit 3 depict systems that are part of the IEW Product Line, including
GRCS1, GRCS3, GRCS4, and IGRV. Where domains intersect systems, the systems include
domain functionality. For example, the GRCS1 system (the system at the far left in the picture)
includes subsystems comprised of assets from the Direction Finding, IEW Man Machine Inter-
face, Emitter Location Processing & Analysis, Coordinate Conversion, and IEW Database
domains, along with system-specific subsystems.

In product-line development, domain engineering is performed to engineer and manage each
domain. The approach to domain engineering described in this document reflects the ODM pro-
cess. Exhibit 4 shows how domain engineering is related to the engineering of individual applica-
tion systems. Domain engineering includes developing a domain model, domain architecture, and
domain assets. First, a descriptive domain model is developed of legacy systems, artifacts, and
experience. This descriptive model is transformed into a prescriptive domain model that docu-
ments the features that the domain architecture will support. A domain architecture is then created
and represented in a concrete and analyzable format. One important difference between a domain
architecture and a system architecture is that a domain architecture must allow for variability,
since a domain may include alternate implementations that can be chosen for application systems
based on system needs. Finally, domain assets are developed that conform to the architecture.
Domain assets are not limited to code, but can also include processes, documents, test materials,
case studies, presentation materials, etc. Domain assets are managed within an asset base. The
asset base can also include tools to aid application engineers in retrieving assets suitable for their

application systems.

12

STARS-PA19-S007/001/00 3.2 Key DAGAR Definitions

Once one or more domains have been engineered, application engineering of new systems and
reengineering of legacy systems can include the use of assets from the domains. Based on system
requirements, the application engineer retrieves appropriate assets from the asset base, often
assisted by asset retrieval tools. These assets are integrated with the newly developed workprod-
ucts (e.g., documentation, code, test cases) for the application system.

3.2 Key DAGAR Definitions

This section explains realms and components, the two basic building blocks of a DAGAR
domain architecture. These terms are described based on an Ada implementation of domain
assets. For a more general description of realms and components see [1], [2] and [5].

An asset base architecture must balance the need for a common approach to supporting domain
requirements with an ability to provide options that admit the necessary domain variability. In
building the descriptive and prescriptive feature models (the domain requirements), attention
must be paid to representing services and capabilities that should be provided by all products pro-
duced from the product line and those that are optionally provided. In addition to such feature
variability, the product line should support tuning of products to accommodate various environ-
mental and resource constraints (e.g. memory size, processor power and communication channel
band width). The realms and components in a DAGAR architectural approach enables an organi-
zation to achieve an effective balance between supporting both commonality and variability.
Through the use of realms, DAGAR provides the common ground on which the product line can
be produced. Through the use of multiple components for each realm, both feature and perfor-
mance variability are supported.

A realm identifies a module! and its interface within a layered domain architecture. For example,
Exhibit 5 provides a schematic overview of the Emitter Location Processing and Analysis (ELPA)
domain architecture as built by the Army STARS Demonstration Project. Each of the named
boxes in the figure (e.g., ELPA, Services Layer, ELPA Services, Computational Layer, Fix Calcu-
lations, Filtering) is a realm. Each of these realms represents a core set of services provided by
assets in the domain.

Each realm contains a realm specification. In an Ada implementation, the realm specification is
an Ada package, except that named holes are allowed besides Ada declarations. These holes show
places in the package specification where implementations may differ in their choices for a decla-
ration, thus allowing variability in the domain architecture. The holes are typically missing Ada
type declarations or fragments thereof.

A component provides one instance of the implementation of a realm. Each realm has one or
more components, any one of which can be chosen as the implementation for the realm in an
instance of the domain. Each component contains a component specification and a component
body.

The component specification tells how each of the realm holes are to be filled. The component
body provides the Ada package body, the implementation of package functions and procedures.
The combination of a realm, with one of its component specifications and the corresponding com-
ponent body contains a full Ada package specification and body.

1. We are using the word module here to signify an architectural unit instead of using the traditional word
component. The word component has a special meaning in DAGAR.

13

3.3 The EDGE/Ada toolset STARS-PA19-S007/001/00

Services Layer

ELPA Services

Fix Calculations

A ’ Coordinate
Filtering ransformations

Computatio Vector & Matrix Math

Layer

Session M
DF File Manage §liIDF Data Manage ession llanage

Fix Manager

" Generic Database Primitives

Data Access Layer

Exhibit 5. ELPA Architecture Summary Diagram

Variability occurs in the domain when a realm contains several components, each of which imple-
ments the same set of services in a different ways. An application engineer creating an instance of
the domain for use in a particular system, can choose the appropriate component for each realm,
based on the requirements for the system.

Component specifications and bodies can be dependent on other realms, through calls to function-
ality in the realm specifications. Since these called realms also have holes and can be instantiated
with any one of their components, variability can occur at many levels within the layered domain
architecture. Thus many different instance implementations can be generated from the same

domain architecture depending on the components chosen for each of the realms within the archi-

tecture.

More information about how realms and components are created in the DAGAR process, along
with an example of each, will be presented in Sections 5.0 and 6.0.

3.3 The EDGE/Ada toolset

The EDGE/Ada (Enhanced Domain Generation Environment for Ada) toolset ([15], [18], [19])

provides full integrated support for the DAGAR process. The toolset can be invoked either

through the EDGE/Ada GUI, shown in Exhibit 6, or through the command line. EDGE/Ada can

be used by domain engineers to compile architecture specifications, realm specifications, compo-

nent specifications, and component bodies. The EDGE/Ada GUI includes a utilities pull down .

14

STARS-PA19-S007/001/00 3.3 The EDGE/Ada toolset

NN RN N N N

N
R R N N N
T \\\\§ |’ W \ . §§§§
-
R

o -

RINAN . RN . \\ AN : YRR .\.\%um N

R N
AN RN
X N
N

\.\\

3
;
R
s
- \
N
E ‘%‘
N
s:
N
R
X

Exhibit 6. EDGE/Ada GUI Main Window

menu, shown in Exhibit 7, which provides access to these EDGE/Ada functions used by domain
engineers. EDGE/Ada can also be used by application engineers to select components from the
domain for use in a particular application system. Once the components have been selected, the
domain instance is generated automatically. More information about using the EDGE/Ada toolset
in conjunction with the DAGAR process is presented in Sections 4 through 7 below.

15

STARS-PA19-5007/001/00

3.3 The EDGE/Ada toolset

Exhibit 7. EDGE/Ada Utilities Pull Down Menu

16

STARS-PA19-S007/001/00 DAGAR Processes and Products

Part II: DAGAR Processes and Products

This part of the guidebook describes the DAGAR process model and work products. This intro-
ductory portion describes how the part and its sections are organized, defines the conventions
used to present information within the sections, and provides guidance in how to read and inter-
pret the information presented.

In general, the process model is described in accordance with the notations and conventions asso-
ciated with the Lockheed Martin Tactical Defense Systems STARS Process Definition Process

[91.

Part Structure

This part is organized hierarchically, reflecting the hierarchical structure of the DAGAR process
model. The full model hierarchy is shown as a process tree in Exhibit 8. Each node in this tree
represents a DAGAR process. The nodes below a given process represent the subprocesses that
are carried out in performing that process. The following terminology is used in referring to pro-
cesses at each decomposition level within the process tree:

* Process: The top level, or “root” node, of the process tree (i.e., Apply DAGAR Process), rep-
resenting the overall DAGAR process.

* Phase: One of the three major components of the DAGAR process: Define Asset Base Archi-
tecture, Implement Asset Base, and Apply Asset Base.

Apply DAGAR Process
Define asset Apply
base architecture asset base
m Plan ‘
ot Tailor
application .
Develop Develop Develop asset of asset base documentation
top level realm documentation ’
architecture descriptions and test maternials Compose Apply
' subtype Generate testcases
subsystem
Develop Create Implement implementation
architecture architecture asset base
specification diagrams /l\\
Plan asset Implement Implement
) base assets infrastructure
tmplementitioyl\\
Develop Develop Develop asset
component component documentation
specifications bodies and test materials

Exhibit 8. DAGAR Process Tree

DAGAR Processes and Products STARS-PA19-S007/001/00

* Sub-phase: A set of tasks that collectively perform a coherent higher-level function within a
phase.

* Tusk: The low-level sets of activities where the detailed DAGAR work is performed and the
workproducts are produced.

The overall DAGAR process is described in detail in Section 4. The Define Asset Base Architec-
ture, Implement Asset Base, and Apply Asset Base phases are described in Sections 5, 6, and 7,
respectively. The sub-phases and tasks within each of the phases are each described in individual
subsections organized hierarchically within Sections 3, 6, and 7.

The phase, sub-phase, and task sections each include a process tree diagram for the current phase,
with shaded areas showing which portions of the phase are described by the section. These dia-
grams not only show the scope of each section, but also serve as recurring road maps to help read-
ers determine their “location” within the process. For example, Exhibit 9 below shows the
diagram from Section 5.1, which describes the Develop Top Level Architecture sub-phase.

f Define asset base architecture \
Develop Develop asset
realm documentation
descriptions and test materials

N

/.

Exhibit 9. Example Process Tree Embedded within a Process Description Section

The process trees present a simplified view of the more detailed structure of the process, which is
represented in IDEF, diagrams. The process, phase, and sub-phase sections each include an
IDEF,, diagram showing the information flows among the processes at the next lower level. For
example, each sub-phase section includes an IDEF, diagram showing the information flows
among the tasks in that sub-phase. Appendix A includes the entire DAGAR IDEF, process
model. If you are unfamiliar with IDEF,,, please consult the appendix for a brief introduction to
the IDEF, notation.

The general approach taken within the process description sections is to present information at the
lowest section level at which it applies, while minimizing redundancy across sections. For exam-
ple, low-level details about ODM activities and workproducts are presented in the task sections,
whereas information about how the tasks within a given sub-phase interrelate (e.g., sequencing
considerations) is presented in the sub-phase section. The higher level sections also discuss the
more general and strategic considerations involved in applying DAGAR.

Section Structure
Section 4, provides an overview of the entire DAGAR process. It places DAGAR within the con-

text of other domain engineering activities. It also introduces the three main phases and the major
sequencing options and issues involving these phases.

18

STARS-PA19-S007/001/00

DAGAR Processes and Products

The phase and sub-phase sections each include the following information:

The introductory text provides context for the process described in terms of the overall pro-
cess model and previous and subsequent processes. The overall objectives and benefits of the

_process are described, as well as (where appropriate) some of the key challenges in carrying

out the process.

Approach: The distinctive aspects of the DAGAR approach in meeting the objectives of the
process and addressing the challenges described above. Key concepts relevant to the process
are introduced here, as are examples to help clarify the concepts.

Results: Describes the resulting workproducts and other outcomes of the process and the
potential uses of these results.

Process: An overview of what the process does and, to whatever extent is necessary, how it
does it (emphasizing data flows and interactions among the lower level processes, rather than
activities that occur within those processes, since they are described in detail in subsequent

sections). The description may also introduce concepts needed to understand the lower level

_ processes.

Sequencing: Guidelines regarding the sequence in which lower level processes can be per-
formed. In general, DAGAR processes need not be performed in a particular sequence. Issues
addressed here might include:

— Different orders in which the processes may be carried out.

— Iteration: Lower level processes may be repeated in a “looping” cycle which has some
criteria for termination.

— Consequences of skipping processes; €.g., starting the sequence in the middle, or termi-
nating the sequence before the end.

— Parallelism: This can take various forms: e.g., multiple teams work different lower-level
processes in parallel, with possible periodic hand-offs of information; or one group per-
forms the processes in a highly interleaved way.

The Process and Sequencing discussions typically elaborate on the process tree and IDEF, dia-
grams included with the section or use them to illustrate points about the process.

The task sections (e.g., 5.1.1, Develop Architecture Specification) constitute the bulk of the pro-

cess model description. These sections describe the low-level DAGAR activities, workproducts,
and information flows in detail and also offer tactical guidance for regulating and controlling the
processes. The task sections are organized as into the following segments:

The first paragraphs set the process context for the task (where have we come from, where
are we going) and outline the task’s key objectives and challenges, and the distinctive aspect
of the task within the DAGAR process.

Approach: Describes the DAGAR approach to accomplishing the task objectives. Key con-
cepts are introduced and illustrated where appropriate with examples related to the example
domain.

Workproducts: Key results of the task. The value of each workproduct is described within
the context of the ongoing DAGAR process.

19

DAGAR Processes and Products STARS-PA19-S007/001/00

The three segments above provide a good overview of the task for general comprehension. The
remaining segments are targeted more directly to the practitioner performing the task:

e When To Start: A set of conditions that should be satisfied before the task can begin.
e Inputs: Information that the task accesses and manipulates in performing its function.
 Controls: Information that regulates or controls how the task is performed.

e Activities: Specific actions or steps to perform in carrying out the task and producing the
workproducts. In general, the activities need not be performed strictly in the order they are
listed, although this can vary significantly from task to task.

e When to Stop: A set of conditions for determining when the task is completed.

e Guidelines: Hints, suggestions, and criteria for performing the task effectively. Validation
and verification criteria and technigues may also be provided here to determine the complete-
ness, consistency, or quality of the workproducts. (These may also appear in the Activities
sub-section when they are best described as distinct activities.)

The Inputs, Controls, and Workproducts directly reflect the inputs, controls, and outputs on the
IDEF,, diagrams.

Examples are woven throughout the text, at whatever level they are deemed most useful. They are
set off in distinct paragraphs with the key-word Example:

Presentation Conventions

A number of conventions were applied in writing the sections within this part to make the process
model descriptions easier to read and understand. These conventions include:

* Section subheadings:

All of the first-level section subheadings (Approach, etc.) are in bold on a line by themselves.
For.example:

Approach
These subheadings are also in a slightly larger font than regular text paragraphs.
e Information under section subheadings:
— Approach, Results, and Process:

The information under these subheadings is prose paragraphs, in whatever format is
most appropriate for the material.

— Workproducts:

Each workproduct produced by the process is signified by a subheading on a line by
itself in the following format:

B ARCHITECTURE SPECIFICATION

Substructure within the workproducts is generally shown using bulleted and sub-bulleted
items underneath the subheadings. ‘

20

STARS-PA19-S007/001/00 DAGAR Processes and Products

Inputs and Controls:

These are presented as bulleted lists. Each item in the list includes the IDEF) data item
name in an underlined run-in heading, followed by some explanation of how the item
relates to the process. E.g.:

* ARCHITECTURE SPECIFICATION. This process uses the ARCHITECTURE SPECIFICA-
TIONto...

Activities:

Each aétivity associated with the process is signified by a subheading on a line by itself
in the following format:

» Identify realms
Guidelines, When to Start, When to Stop:

These are also presented as bulleted lists. Each item typically includes an underlined
phrase (usually a run-in heading, but not always) that concisely summarizes the item,
followed by explanatory text. E.g.:

* Iterate back to Asset Base Modeling as necessary. If the domain engineering . . .

Under these subheadings, there may also be non-bulleted prose paragraphs providing
sweeping or summary guidelines.

Examples, Caveats, Notes, etc.:

These are special paragraphs, indented from the surrounding text, which provide exam-
ple-related material, caveats, notes, or other special information. These usually begin
with the word “Example,” “Caveat,” etc.

* Typographical conventions:

SMALL CAPS (WITH INITIAL LARGE CAPS): DAGAR workproducts (i.e., any workprod-
uct produced directly by a DAGAR process);

ALL SMALL CAPS: Other IDEF,, data items (net inputs to the overall process);

Italic With Initial Caps: DAGAR process names (phase, sub-phase or task). Activities
are generally referred to only within their own task description section, and with no spe-
cial typographic conventions.

bold italic: An instance of a key term (usually this is reserved for the initial instance of
the term within some cohesive portion of the guidebook, such as a section or group of
sections).

italic: Emphasizes or highlights any term or phrase in running text.

Note that bold regular highlighting is used only in section headings, subheadings, or run-in head-
ings within paragraphs (with the exception of this sentence).

21

DAGAR Processes and Products STARS-PA19-S007/001/00

22

STARS-PA19-S007/001/00 4.0 The DAGAR Process

4.0 The DAGAR Process

This section introduces the basic DAGAR process scenario and some of the key terminology used
throughout the remaining sections in Part II. The basic sequence described in this document is a
single-project scenario, producing an architecture and assets for a single domain of focus, and
reusing assets during the development of an application system.

The DAGAR Context

DAGAR involves the developing an asset base architecture and asset base assets for a domain and
making use of the assets in the development of application systems. The process tree depicted in
Exhibit 8 (in the introduction to Part II above) shows the scope of DAGAR in terms of the pro-
cesses involved. In the following descriptions, this overall scope is called the DAGAR process.

The DAGAR process takes place in the context of a reuse program, which is described more fully
in the STARS Conceptual Framework for Reuse Processes (CFRP) model [22]. The CFRP out-
lines a taxonomy of reuse processes intended to span all reuse-specific aspects of reuse-based
software development. The CFRP model (shown at a high level in Exhibit 10) is partitioned into
two major sub-models, known as idioms: Reuse Management and Reuse Engineering.

Reuse Management processes form a cyclic pattern of activity addressing the establishment and
continual improvement of reuse-oriented activities within an organization by emphasizing learn-
ing as an institutional mechanism for change.Reuse Management processes include the Reuse
Planning, Reuse Enactment, and Reuse Learning process families.

Market
Forces

Assets

Software

Software
Systems

Systems

Domain
Knowledge

Assets

Technology

Organizational
Context

Exhibit 10. STARS Conceptual Framework for Reuse Processes (CFRP)

23

4.0 The DAGAR Process STARS-PA19-5007/001/00

Reuse Engineering processes from a “chained” pattern of activity that addresses reuse-related
product development and reuse and explicitly recognizes the role of the broker as a mediator
between producers and consumers. Reuse Engineering includes the following three process fami-

lies:

* Asset Creation processes produce and evolve domain models, domain architectures, and
domain assets, including requirements and architecture assets, application generators, and
software components.

* Asset Management processes acquire, describe, evaluate, and organize assets produced by
Asset Creation processes, make those assets available to utilizers as a managed collection,
and provide services to promote and facilitate reuse of the assets.

* Asset Utilization processes reuse the assets made available by the Asset Management pro-
cesses by identifying, selecting, and tailoring desired assets and integrating them to construct
application systems within target domain(s).

In CERP terms, DAGAR focuses on the Asset Creation (i.e., domain engineering) and Asset Uti-
lization process families of the Reuse Engineering idiom, as shown in Exhibit 11. DAGAR
“addresses part of the Domain Architecture Development process and the entire Asset Implemen-
tation process in Asset Creation. The definition of an architecture within CFRP Domain Architec-
ture Development is addressed in the Define Asset Base Architecture phase of DAGAR. A
generative approach to Asset Implementation is addressed in the Implement Asset Base phase of
DAGAR. Parts of the CFRP Asset Identification and Asset Selection processes in Asset Utiliza-
tion are addressed in the Apply Asset Base phase of DAGAR. The Apply Asset Base phase
addresses the portions of these processes that apply to selecting and validating assets from a sin-
gle asset base. DAGAR does not address searching across multiple asset bases for assets, or tai-
loring assets and integrating them with the rest of the application system.

Since DAGAR does not include Domain Analysis and Modeling processes, the DAGAR process.
assumes that domain analysis and modeling and scoping of the asset base have been carried out
and certain workproducts are available before DAGAR is begun. Since DAGAR is a supporting
method of the Organization Domain Modeling (ODM) domain engineering method [20}, ODM
directly supports the creation of the workproducts needed to begin DAGAR (as discussed in
Section 8.0), but other domain engineering methods could also be used to produce these work-

products.

The DAGAR process does not include the ongoing management of the domain asset base (i.e., the
CFRP Asset Management process). Relationships between the DAGAR process and the manage-
ment of the asset base must be carefully considered in planning and managing the overall reuse
program. Discussing these relationships in detail is beyond the scope of this document.

Exhibit 12 shows the IDEF,, context diagram for the DAGAR process. DAGAR requires that an
organization has clearly defined its priorities, analyzed and modeled the domain, and made deci-
sions about what features will be implemented in the asset base. The asset base must have been
scoped to derive an overall feature profile for the asset base. Asset base scoping also includes
characterizing the market for the asset base, that set of application system contexts in which prac-
titioners will potentially utilize domain assets. The ASSET BASE MODEL contains the subset of the
features and potential customer contexts described in the domain model that will be supported by
the asset base. The ASSET BASE MODEL should include a map between customers and features
showing potential customers for features. The ASSET BASE MODEL controls the DAGAR process,
since the architecture and assets implemented must match the features to be implemented.

STARS-PA19-S007/001/00 4.0 The DAGAR Process

CREATE

MANAGE

Domain Analysis Asset Criteria
and Modeling Determination
Domain Architecture L 7
Development/, Asset ldegtrflcatlon /
7
Asset Implementation Asset Selection
Asset Tailoring
77 Asset Integration
- Scope of DAGAR

Exhibit 11. Scope of DAGAR Processes within the CFRP

An ASSET BASE DOSSIER is also needed to begin the DAGAR process. The ASSET BASE DOSSIER
contains information about the customers who will be supported by the asset base. The ASSET
BASE DOSSIER also contains usability and feasibility data, as well as traceability to EXEMPLAR SYS-
TEM ARTIFACTS that can be used in implementing assets. EXEMPLAR SYSTEM ARTIFACTS are arti-
facts from any stage in the software engineering life cycle for systems or subsystems that are
within the scope of the domain functionality. These artifacts can be used as a starting point for
developing reusable assets for the domain.

Before an ASSET BASE ARCHITECTURE can be defined, internal and external ARCHITECTURE CON-
STRAINTS on the architecture must be identified and understood. Determining external architecture
constraints involves addressing external interfaces to asset functionality required by application
engineers who will use the asset base. These include constraints imposed by the external system
environments in which the assets will operate, as well as external services that may be invoked by
asset functions. External architecture constraints can include expected application contexts (e.g.
programming language, operating system, subsystem integration concerns, software lifecycle
documentation constraints) and hardware platform considerations.

25

4.0 The DAGAR Process STARS-PA19-S007/001/00

Asset base Project Technology Architecture
model resources constraints constraints
Asset base 1 l l
dossier L Apply
DAGAR
process » Subsystem
Exemplar 0
system
artifacts
EDGE
Exhibit 12. DAGAR IDEF; Context Diagram
0 £

Determining internal architecture constraints involves addressing issues of how to structure the
internal relationships between assets in the asset base. There are two perspectives to be consid-

ered here:

* Layering of assets into subsets that can be selected separately by the application engineer.
Each of these layerings represents a restricted version of overall domain functionality.

* Asset encapsulations of particular domain functionality — how should the domain functional-
ity be split among assets?

PROJECT RESOURCES and TECHNOLOGY CONSTRAINTS control the Apply Asset Base phase of
DAGAR. PROJECT RESOURCES are used to develop reasonable objectives and schedules for imple-
menting assets. TECHNOLOGY CONSTRAINTS, such as mandates and limitations, can effect whether
assets are used when developing application systems.

SUBSYSTEMS generated from the asset base as the key result of the DAGAR process. These SUB-
SYSTEMS are then be integrated into application systems.

Phases of Domain Engineering

The DAGAR process consists of three main phases, as shown in Exhibit 13: Define Asset Base
Architecture, Implement Asset Base, and Apply Asset Base. These phases are called (Asset Base)
Architecture Definition, (Asset Base) Implementation, and (Asset Base) Application in the fol-
lowing paragraphs for convenience.

26

STARS-PA19-S007/001/00 4.0 The DAGAR Process

Asset base Architecture Project Technology
model constraints resources constraints
N ~
e
Define asset | Asset base
Asset base b_ase architecture ~ Application
dossier architecture system
! requirements
Asset base
Implement _&sc_ts\ infrastructure
Exemplar %sset
system ase)
artifacts
Asset Asset
constraints | base Apply

\ plassetbase | o Subsystem

L T

A

EDGE
Exhibit 13. DAGAR IDEF, Diagram

The primary purpose of the Architecture Definition phase is to build the ASSET BASE ARCHITEC-
TURE, the architectural framework that forms the foundation for the ASSET BASE. The ASSET
BASE ARCHITECTURE includes the range of external interfaces to be supported, definition of the
modules within the architecture, and definition of the interconnections among these modules.
Architecture documentation and test cases are also developed.

The primary purpose of the Implementation phase of the DAGAR process is to produce an ASSET
BASE. An asset may be a software component, a generative tool, a template for a design docu-
ment, or any workproduct of the software life cycle specifically engineered for reuse within a
domain-specific scope of applicability. The asset base is the full set of ASSETS for a domain,
together with the ASSET BASE ARCHITECTURE that integrates the assets, the ASSET BASE INFRA-
STRUCTURE required for the domain, and ASSET CONSTRAINTS.

The primary purpose of the Application phase of the DAGAR process is to apply the ASSET BASE
to the development of a system that includes functionality compatible with the domain. Applica-
tion engineers use the ASSET BASE INFRASTRUCTURE and ASSET CONSTRAINTS to choose ASSETS
based on system requirements, and generate a SUBSYSTEM for their application. This SUBSYSTEM
is then integrated with the rest of the application system.

Sequencing

Iteration between Architecture Definition and Implementation phases. Once the preliminary
ASSET BASE ARCHITECTURE has been developed, ASSET implementation can begin. Expect itera-

27

4.0 The DAGAR Process STARS-PA19-S007/001/00

tion between these two phases so that the ASSET BASE ARCHITECTURE can be expanded and
enhanced based on lessons learned during implementation of the ASSETS.

- Implement needed ASSETS first. Implementation should begin with the implementation of ASSETS
that are currently needed for application systems being developed. Once these ASSETS have been
developed, implementation of other ASSETS can proceed in parallel with using the ASSETS already
developed in application systems.

28

STARS-PA19-S007/001/00 5.0 Define Asset Base Architecture

5.0 Define Asset Base Architecture

The Define Asset Base Architecture phase is the first phase of the DAGAR process. The purpose
of the Define Asset Base Architecture phase is for the domain engineer to build the ASSET BASE
ARCHITECTURE.

Develop Develop asset

top level documentation
hitectur nd test material

s

o e e

Exhibit 14. Define Asset Base Architecture Process Tree

DAGAR requires a thinking about ASSET BASE ARCHITECTURES from a domain perspective
rather than a system perspective. Domain engineers need training in DAGAR and asset base
architecture development. Domain engineering staff should be provided with the necessary train-
ing in DAGAR in order to insure an efficient and knowledgable application of the method. Devel-
opment of an ASSET BASE ARCHITECTURE requires team members to reevaluate and reinterpret
some of their ingrained system design and implementation inclinations. The DAGAR method is
based on sound engineering abstractions such as step wise refinement, delayed binding of design
decisions and information hiding. However, use of the method requires a mindset adjustment
from traditional architecture development to ASSET BASE ARCHITECTURE development that must.
be learned and adopted by the entire domain engineering team. An asset base architect must be
concerned with all possible applications of the ASSETS in a domain. An asset base architect has
the responsibility to create a framework expressive enough for the full range of variability in the
domain while capitalizing on the commonality.

Approach

The Define Asset Base Architecture phase involves the development of an ASSET BASE ARCHI-
TECTURE — the architectural framework that forms the foundation for the domain assets.The
ASSET BASE ARCHITECTURE includes the range of external interfaces to be supported, definition
of the modules within the architecture (called REALMS), and definition of the interconnections
among these modules. ASSET BASE ARCHITECTURES are distinct from system architectures
because ASSET BASE ARCHITECTURES model the range of variability in system architectures that
can be obtained from the ASSET BASE. Both the EXTERNAL ARCHITECTURE CONSTRAINTS and
INTERNAL ARCHITECTURE CONSTRAINTS are taken into account during the Define Asset Base
Architecture phase.

Results

The primary output of the Define Asset Base Architecture phase is the ASSET BASE ARCHITEC-
TURE, which is used as a framework both for ASSET implementation and for choosing ASSETS
during the Apply Asset Base phase. In addition to a formal architecture description produced using
the EDGE/Ada toolset, this phase also produces less formal supporting material that helps users

29

5.0 Define Asset Base Architecture STARS-PA19-S007/001/00

Architecture

constraints

Develop top Top }evel
Asset base level architecture
model architecture ! h

1.1
Architecture
specifications
Develop Realm
~—» realm descriptions
descriptions h Test
1.2 .
materials
Develop L
\ architecture —'4
_ documentation Asset base
Assqt base and test materials architecture
dossier 1.3
‘ Architecture
L documentation
EDGE
Exhibit 15. Define Asset Base Architecture IDEF, Diagram

understand and use the architecture effectively. The architecture is also used as the framework
that is used to select assets when asset base customers interact with the asset base using the Archi~
tecture Configuration Assistant (ACA) component of EDGE/Ada.

Process

There are three main sub-processes in the Define Asset Base Architecture phase, as depicted in
Exhibit 15:

¢ In the Develop Top Level Architecture sub-phase, domain engineers primarily address the
large-scale decomposition and connectivity of the ASSET BASE ARCHITECTURE and use the
capabilities of the EDGE/Ada toolset to define and verify the correctness of the evolving
architecture specification. In addition, since the architecture specification is defined using a
formal architecture specification language (derived from one described in [1]), it is useful to
augment the definition with diagrams that help visualize the meaning defined in the specifica-
tion.

* In the Develop Realm Descriptions task, domain engineers go beyond the higher level defini-
tion and begin to address the individual services and elements that are contained within each
of the major architectural building blocks (realms) that make up the architecture. An
extended form of Ada is used as the specification language for these building blocks. EDGE/
Ada is used to verify that these REALM SPECIFICATIONS for each realm are consistent with the
architecture definitions as defined in the ARCHITECTURE SPECIFICATION.

* In the Develop Architecture Documentation and Test Materials task, domain engineers set the
stage for later usage of the architecture. The architecture is used both to guide the develop-

30

STARS-PA19-S007/001/00 5.0 Define Asset Base Architecture

ment of implementations of each of the realms and to make sure that properties visible within
the realm interface description are accurately and faithfully implemented. At the architecture
stage, documentation typically takes the form of incomplete templates readable by the pre-
ferred documentation tools. Test materials are often at the level of black box test plans and
-core test data that can be used once components implementing the realms are in place.

Sequencing

* Iterate back to revise the TOP LEVEL ARCHITECTURE as necessary. Since in practice it is diffi-
cult to identify all REALMS and COMPONENTS up front, the domain engineer will likely cycle

back to revise the TOP LEVEL ARCHITECTURE as necessary when more aspects of the archi-
tecture are identified. The EDGE/Ada tool supports extending the architecture by allowing
the processing of ARCHITECTURE SPECIFICATIONS that add new REALMS and COMPONENTS
or modify the realm parameters for existing components. It is also likely that the Develop Top
Level Architecture sub-phase will need to be revisited as the Implement Asset Base phase pro-
ceeds, to fold in discoveries and address problems that are brought out during implementa-
tion and associated activities.

* ' The subtasks of this phase should not be performed sequentially. All three of the subtasks are
best viewed as being alternate points of view into the production of a single architecture. As

details emerge within one point of view, these details should then be considered from the
other perspectives so that the architecture evolves effectively.

* Toolset-driven development. EDGE/Ada provides significant support for the performance of
activities that fall within the Define Asset Base Architecture phase. Domain engineers should
learn how to use the various capabilities contained in EDGE/Ada and integrate use of the
tools into their daily domain engineering activities.

31

5.1 Develop Top Level Architecture STARS-PA19-S007/001/00

5.1 Develop Top Level Architecture

Architecture development should begin with an initial top level consideration of the goals and
customers to be served by the production of the asset base. This consideration will naturally start
with a first cut at the production of a candidate architecture. This architecture will remain some-
what fluid as architecture definition and asset base implementation proceed. Insights gained dur-
ing asset implementation will be fed back to architecture development and result in subsequent

changes to the architecture.

/ Define asset base architecture \
Develop Develop asset
realm documentation
descriptions and test materials

Exhibit 16. Develop Top Level Architecture Process Tree

The primary purpose of the Develop Top Level Architecture sub-phase of DAGAR is to produce a
concrete formulation of the domain architecture, the ARCHITECTURE SPECIFICATION, as supported
by the EDGE/Ada toolset. This formal description can be thought of as a high-level layout of the
scope and content of the architecture. As described below, the main elements of a DAGAR archi-
tecture are the set of realms that encapsulate a set of operational capabilities (sometimes called a
virtual machine) and for each realm, a set of components that will be alternate implementations of-
these capabilities. Each component is free to make use of the services of other realms in defining
the details of the implementation of the realm to which it belongs. Each realm used by a compo-
nent in this way is called a realm parameter. In addition, the top level formal description is sup-
plemented by less formal auxiliary views that are often drawn using simple graphics tools or the
drawing modes offered in document preparation software or CASE tools.

It may be difficult for engineers just learning about DAGAR and its EDGE/Ada tool support to
approach ASSET BASE ARCHITECTURE design without thinking in systems design terms. An asset
base is more than a single system and an asset base architecture is much more than a system archi-
tecture. An ASSET BASE ARCHITECTURE represents the potential to design many systems, each
with its own distinct system architecture. Each component connects to a fixed number of realms,
but each component in a realm can have quite distinct parameter profiles. Each system may
require selecting components from some, or all, of the existing realms. The domain engineer must
create the architecture to allow for multiple users with multiple systems and requirements to make
use of the assets presented through the architecture. This multi-system thinking requires effective
use of the information accumulated during domain analysis including an understanding of the
expected customers and their needs.

Approach
The task of architecture definition begins with a review of the various models produced during

domain analysis. In particular the ASSET BASE MODEL that identifies features of interest to cus-
tomers and preliminary allocations of groups of features to particular customers is reviewed. The

32

STARS-PA19-S007/001/00 5.1 Develop Top Level Architecture

Architecture
constraints

Components
/

Develop Realms ['/

Asset base architecture N
model specification
111 VAR h
/
/
Architecture
specification
Architecture
diagrams

Create
— %

p| architecture
\ diagrams
112

- Top]evel
architecture

EDGE
Exhibit 17. Develop Top Level Architecture IDEF; Diagram

architecture constraints are also consulted to see if there are any outstanding issues that may affect
the ability of particular customers to successfully build applications around the assets in the asset:
base. A preliminary attempt is made to list realm and component candidates that group related
sets of features found in the ASSET BASE MODEL into an initial implementation strategy for defin-
ing these feature sets. Connectivity options among components are represented in the architecture
as realm parameters for these components. Layering of features are represented in the realms
identified for inclusion in the preliminary architecture.

Existing artifacts (e.g. Ada package implementations of exemplar system code) can often be used
to suggest an initial cut at components and their dependence on other components. Interfaces
among these artifacts may in turn suggest realm candidates for inclusion in the architecture. Once
realm and component candidates have been identified, they can be abstracted and formally
recorded using the architecture specification language syntax supported by the EDGE/Ada
toolset.

Results

An ARCHITECTURE SPECIFICATION provides the top-level definition of the architecture. This spec-
ification identifies the realms in the architecture, the components for each realm, and the realms
used by each of these components (called realm parameters).

The ARCHITECTURE SPECIFICATION is supplemented by diagrams of the architecture. These dia-
grams show a graphical depiction of the architecture including how the architecture is decom-
posed into realms and how realm components make use of other realms within the architecture.
SAAM diagrams (a diagramming method used in the SEI’s Software Architecture Analysis

33

5.1.1 Develop Architecture Specification STARS-PA19-S007/001/00

Method [8]) can be used to present a block diagram of the architecture (see Exhibit 21 on

page 42). An RLF (Reuse Library Framework) [21] representation of the architecture can also be
produced, generated automatically by EDGE/Ada from the ARCHITECTURE SPECIFICATION. The

- RLF representation of the architecture can be used to support application engineers in their
retrieval and composition of assets from the asset base during the Apply Asset Base phase.

Process

As shown in Exhibit 17, the Develop Top Level Architecture sub-phase consists of two tasks:

e In the Develop Architecture Specification task, domain engineers first map their informal
architecture conceptions derived from domain model data to a formal description using the
language supported by EDGE/Ada. EDGE/Ada then compiles this specification into the
EDGE library. Elements of this architecture specification are used by the EDGE/Ada toolset
during later phases of the architecture definition process.

* In the second task, Create Architecture Diagrams, domain engineers use documentation or
CASE tools to produce diagrams and other informal notes about the architecture as it is being

created.

Sequencing

* The two tasks are usually worked simultaneously. ARCHITECTURE DIAGRAMS can be created
from the domain information sources and the resulting figures then converted to ARCHITEC-
TURE SPECIFICATIONS. Or, the ARCHITECTURE SPECIFICATIONS can be produced directly from
the information sources and then diagrams can be created to help visualize and summarize
the architecture. In either case, the domain engineering staff needs to make sure that the
ARCHITECTURE DIAGRAMS are accurate and reflect the contents of the formal ARCHITECTURE
SPECIFICATION.

* Neither task can be considered as driving the other. Both of these tasks consider the same raw
information sources and workproducts can be produced using these sources independently.
However, the team may elect to always perform one task as a lead-in to the other so that the
second task can be considered as a derivative of the first. This strategy will lessen the risk of

" discontinuity between the information recorded during these tasks.

e Adequate attention must be given here before considering other architecture tasks. While
there are no hard sequencing constraints on these tasks, it would be a mistake to spend inade-
quate time in performing the tasks in this sub-phase before going on to do significant work in
other areas. Defining a top-level architecture view, even a preliminary one that may change
significantly as the asset base is evolving, will help the entire domain engineering team to
think in architectural terms and base further development work on a formally recorded archi-
tectural foundations.

5.1.1 Develop Architecture Specification

Domain modeling has helped the domain engineering team understand what is required of assets

that are to be developed. In the Develop Architecture Specification task, the framework is created

by which these assets are configured, understood and applied. This framework is the ASSET BASE
ARCHITECTURE. DAGAR, supported by the EDGE/Ada toolset, gives the domain engineer the

means to create the architecture in a machine-processable form. The architecture will then be used

to guide asset development and will be the basis for the infrastructure by which the application

engineer selects assets for use within a particular application. .

34

STARS-PA19-5007/001/00 5.1.1 Develop Architecture Specification

/ Define asset base architecture \
Develop Develop Develop asset
" top level realm documentation
architecture descriptions and test materials

Create
architecture

diagrams J

Exhibit 18. Develop Architecture Specification Process Tree

-

The primary purpose of the Develop Architecture Specification task is to complete a formal
ARCHITECTURE SPECIFICATION that is syntactically correct and that will evolve to include declara-
tions for all of the basic architectural entities that make up the architecture (realms) and a com-
plete list of all of the components that belong to each of these realms. The EDGE/Ada-supported
language used to define the architecture is an adaptation of one originally defined by Don Batory
in his support of the DSSA project that produced architectural specifications for the avionics
domain [1]. As a result of deciding the identities and gross architectural characteristics of the
building blocks, the domain engineering staff will be prepared to begin the development of inter-
face specifications for both the realms, and components within each realm. The architecture will
also be used as the basis for DAGAR component composition expressions that govern the genera-
tion of Ada packages from the architecture.

Avoid the temptation to pay attention at this point to details of the interfaces and functioning of
the realms and components identified during this task. The architecture should not be viewed as -
something that can “fall out” of the effort to complete the realm and component specifications.
The DAGAR process is grounded in the need to give adequate attention to up-front architecture
development and specification. While the toolset can insure that every part of the asset base archi-
tecture and contents are consistent, the architecture itself definitely does not fall-out from other
aspects of domain engineering.

Approach

Developing an architecture specification involves identification of realms, identification of com-
ponents (including realm dependencies for each of these components), and the production of the
ARCHITECTURE SPECIFICATION itself using the EDGE/Ada toolset.

Workproducts
B REALMS

The list of realms that are candidates for inclusion within the ASSET BASE ARCHITECTURE. This
list should include whether each candidate realm was included in the architecture or rejected, and,
if rejected, the reason for rejection. This is a working list that is used to support the production of
the ARCHITECTURE SPECIFICATION. Identification of realms that were considered, but rejected, for
inclusion in the architecture can help to train other domain engineers in learning how to decide
what realms ought to make the cut. It may also be useful to go back to this list of realm candidates

35

5.1.1 Develop Architecture Specification STARS-PA19-S007/001/00

-~ File: elpa.e - Computation Layer:
realm Error_Comp = {G_N_Error_Comp{ELPA_Math, Matrices],
Coordinates, N
Data,
Database, ELPA_Math = {Verdix ELPA_Math,
Dates, R
ELPA,
ELPA_Math, = | }-————"""""--"m oo m e e
Error_Comp, Matrices = {Std_2_Matrices [Vectors],
Files, Std_3_Matrices [Vectors],
Filter, Sym_2_Matrices [Vectors],
Fix_Calc, Sym_3_Matrices [Vectors],
Fix_Math, <o }i
Fixes,
Matrices, Vectors = {Std_2_Vectors [ELPA_Math],
Session, . std_3_Vectors [ELPA_Math],
Vectors; I

Exhibit 19. Partial Architecture Specification

later when architecture modifications are under consideration so that possible alternative formula-
tions can be extracted from this list.

B COMPONENTS

The list of components considered for each realm, along with identification of which were
selected or rejected and the rationale for the choice. As is the case for realms, the list of consid-
ered components is used to produce the ARCHITECTURE SPECIFICATION. The list may also prove
useful for training purposes and to serve as source material when the architecture undergoes mod-
ifications as construction of the ASSET BASE ARCHITECTURE proceeds. .

B ARCHITECTURE SPECIFICATION

An ARCHITECTURE SPECIFICATION provides the top-level definition of the architecture. The
ARCHITECTURE SPECIFICATION identifies the REALMS in the architecture, the COMPONENTS for
each REALM, and the REALMS used by each of these COMPONENTS (called realm parameters).
The first two activities generate lists of candidate elements for the realms and components that
will be formally named and related within the architecture specification itself. In fact, it is likely
that all three of these activities will be performed simultaneously and that various ARCHITECTURE
SPECIFICATION drafts will be produced and processed by EDGE/Ada as edited versions of realm
and component candidates are pulled from the raw listings.

Two segments of an ARCHITECTURE SPECIFICATION for the ELPA domain produced during the
STARS Army demonstration project are shown in Exhibit 19. The left box of the figure declares
all of the realms that are part of the specification while the right box shows the declaration of
components for four of the realms. The names in square brackets are the realm parameters for
each component. For example, the component G_N_Error_Comp in the Exrror_Comp realm is
declared to have ELPA_Math and Matrices as realm parameters. The ARCHITECTURE SPECIFI-
CATION is processed by the EDGE/Ada toolset to place the top-level architecture definition in the

EDGE library.

36

STARS-PA19-5007/001/00 5.1.1 Develop Architecture Specification

When to Start

e Sufficient Domain Analysis workproducts exist. As discussed at the beginning of this section,
DAGAR officially begins with the top-level architecture production set of activities and the
production of the necessary information resources with which to perform the activities is out-
side the scope of this guidebook.

* Asset Base customer context understood. The asset base customer context is a vital segment
of the information web that should be consulted while domain architecture definition activi-
ties are taking place. The asset base should be constructed to support specific customers and
customer needs and at the same time have properties that will fit the needs of anticipated cus-
tomers. In order for architecture definition to be successfully carried out, this customer
impact assessment must be available to, and understood by, the domain engineering staff.

Inputs

* ASSET BASE MODEL. This workproduct contains a collection of domain analysis results that
can be used as the basis for architecture formulation. What must be known is how domain
‘features were arranged and provided for in past applications (e.g., in exemplar systems con-
sidered during domain analysis activities) and a prescriptive model of how these and other
desired domain features can be arranged and implemented to meet the needs of a set of actual
and projected asset base customers.

As suggested in [17], an architecture driven process such as DAGAR needs to be supported
by architecture-centric domain models. Thus, it is helpful to know during domain analysis
that a process such as DAGAR will be used to apply the results of the analysis during archi-
tecture definition. Knowing this will help the domain analysts produce models that will pos-
sess an architecture perspective that can anticipate some of the essential choices that will
eventually be made and presented during architecture development,

Controls

* ARCHITECTURE CONSTRAINTS. The identification of these constraints is outside the scope of
DAGAR. A priori knowledge of the intended application of the DAGAR methods can lead to
tailored versions of these constraints that are more easily applicable to decision-making dur-
ing architecture development.

Activities
» Identify REALMS

In the early stages of architecture development, REALMS represent potential groupings of domain
functionality and features into a collection of abstract object and operation interfaces. At this
stage, the domain engineer is not yet concerned with making decisions about the precise number
or format of these interfaces. However, the placement of such operations and objects into compat-
ible groups and looking for high-level layering of such segmented collections into a series of
abstract state machines are both important considerations. Naming these collections and deter-
mining a gross interconnection strategy among the various groupings is an important first step in
producing the domain architecture. These collections or layers of capability will be fleshed out in
the Develop Realm Descriptions task.

The primary output of this activity will be a list of realm candidates and a brief narrative descrip-
tion of the scope, level and purpose of each of the realm candidates. Not all of these may be used

37

5.1.1 Develop Architecture Specification STARS-PA19-S007/001/00

in the ARCHITECTURE SPECIFICATION but unused candidates can serve as comparative touchstones
as architectural reevaluations is performed in response to asset base implementation activities.
The primary information source for this activity is the ASSET BASE MODEL produced during the
latter stages of domain analysis. The set of realms will likely be produced in tandem with a set of
components as identified in the next activity. Both of these sets provide the raw material from
which to build the ARCHITECTURE SPECIFICATION.

» Identify COMPONENTS

Each abstraction of domain functionality and feature sets encapsulated as a realm will be realized
as one or more implementations. A realm implementation is called a COMPONENT. Since there are
many potential ways to achieve the capabilities identified as realm objects and services, there are
many potential components that can provide what is offered through a realm interface. This activ-
ity seeks to develop candidate lists of alternate implementation strategies and approaches that can
deliver the capabilities required of the realm.

The primary way components can differ from one another in a DAGAR architecture is in the
number and level of resources that each component expects to use to complete its mission. These
supporting resources are typically recognized as realms that belong to the architecture itself and
are parameters to the individual components. In addition to the architectural dependencies, a com-
ponent may need to reference a number of infrastructure or supporting packages that exist to sup-
port components at all levels of the architecture. These packages are not part of the architecture as
seen by the outside world (e.g., an application engineer wishing to apply the architecture) and
may be written as Ada modules.

The purpose of this activity is to assemble a list of component alternatives for each realm and to
identify what realm parameters and supporting packages may be necessary to complete the imple-
mentation of components. No details are required at this stage, and a tendency to prematurely
consider implementation details must be resisted. An iterative strategy where a component alter-
native set is produced as each realm candidate is identified is one possibility. Another is to first
generate the candidate list of realms devoid of any component considerations and then begin the
process of component identification.

» Create formal ARCHITECTURE SPECIFICATION

As previewed in Exhibit 19, the primary output of this task is a formal architectural description
that is processed by EDGE/Ada. In the early stages of architecture development, what is know is
a list of realms (the left side of the exhibit) and for each realm, a list of the components that are
expected to be built to implement each realm. Each component may have one or more realm
parameters (enclosed in square brackets, separated by commas) that declare what architectural
resources outside the component’s own realm are necessary to complete the implementation of
the realm by the component. The right side of Exhibit 19 gives several examples of components
and their associated realm parameters.

The domain engineer will use a text editor to prepare the architectural specification (by conven-
tion, saved as <filename>.e) and this file is then processed by the EDGE/Ada toolset. Any syntac-
tic errors are reported to the user. The set of realms, and components per realm, are entered into
the EDGE library and this stored data will be used to confirm the correctness of realm and compo-
nent specifications as these are produced in later phases of the DAGAR process. For example, if
the architecture specification declares that a particular component requires three distinct realm
parameters, later when the domain engineer wishes to “compile” the component specification and
body for the component, only those three realms will be allowed in any external resource refer-

ences made from the component (along with any supporting packages). ‘

38

STARS-PA19-S007/001/00 5.1.1 Develop Architecture Specification

The domain engineer can elect to wait until relatively mature realm and component lists have
been produced during the other two activities comprising this sub-task; or, EDGE/Ada can be
used early and often to prototype a skeletal rendition of the architecture specification as new
realms and components are identified as being worthy of serious consideration. Each successive
application of EDGE/Ada on the same file will update the EDGE library to include the modified
realm and component descriptions.

When to Stop

e Mature and workable ARCHITECTURE SPECIFICATION exists. The domain engineering team
should not expect that the entire architecture can be finally and completely determined after a
single pass through the activities of this sub-task. However, a sufficiently stable and complete.
version of the architecture must be in place before beginning asset base implementation. The
other tasks of the Architect Asset Base task, in particular the Develop Realm Descriptions
task, can be begun before the architecture has completely stabilized. Work in these areas can
in fact point out weaknesses in the architecture that need to be addressed before the later
phases of DAGAR get underway.

The Develop Architecture Specification task can stop when the set of realms and components
is understood well enough that component specification and component body development

can begin.

Guidelines

* Tterate back to Asset Base Modeling as necessary. If the domain engineering staff has built
the right kinds of models, and gathered the right sort of information within models, it will

probably be straight-forward to transition from those models to the architecture for an asset
base. If in fact it turns out that this transition experience is difficult, the domain engineering
team should consider revisiting its ASSET BASE MODEL development processes with the aim
of identifying process improvements and improving the ASSET BASE MODEL.

* Frequent consultation of domain information sources should not be needed. The ASSET BASE
MODEL is the primary information sources for architectural development. Frequent trips back

to domain information sources suggest the need for an improved process and better model
review activities.

There should be a built-in mechanism within an organization’s pursuit of an ASSET BASE
ARCHITECTURE so that when a disconnect between ASSET BASE MODEL applicability and use-
fulness is detected, the domain engineering staff is able to go back, modify their procedures
and feature “sensitivity”” and produce better models that support the development of the
ASSET BASE. However, it would be a mistake to attempt to model everything. Pointers back
to the domain information sources can be provided and used to fill in details as necessary. But
such details are more likely relevant during the later implementation phase of DAGAR rather
than in the architecture definition phase.

* Where possible, directly connect features to architecture. The most common connections

from features to architecture should be visible as feature model support for declarations
appearing in REALM SPECIFICATIONS and for elaborations of holes, and the presence of par-
ticular realm parameters, within COMPONENTS.

Features should generally be citable for the grouping of types and operations within REALMS
and for the variability supported within the architecture for providing adaptations of these
REALMS by COMPONENTS. Support for the creation of major REALMS and COMPONENT
implementations of these REALMS may also be found in the domain stakeholder model where

39

5.1.2 Create Architecture Diagrams STARS-PA19-S007/001/00

certain types of desired configurability have been recorded. Innovative features can be used
to support certain architectural decisions, but there should also be collateral stakeholder sup-
port for building these decisions into the ASSET BASE ARCHITECTURE. In any event, the
structures presented through the REALM SPECIFICATIONS, and the variability indicated by the
presence of multiple COMPONENTS with unique connections to other REALMS within the
ASSET BASE ARCHITECTURE, should be traceable to feature model elements as architecture

definition is carried to its conclusion.

e Start defining the TOP LEVEL, ARCHITECTURE DESCRIPTION early. It is critical that this task

not be delayed. If necessary, the best exemplar system architecture should be evaluated for
use as a strawman ASSET BASE ARCHITECTURE and expressed as a DAGAR ARCHITECTURE

SPECIFICATION.

5.1.2 Create Architecture Diagrams

The task described in the previous subsection was aimed at formalizing what can be said about the
top-level architecture as architecture definition begins. But such a formal description can be hard
to visualize and communicate to someone other than the domain engineers who helped develop
the formal architecture specification. As such, descriptive material that displays the architecture in
an expressive, visual manner is desired.

/ Define asset base architecture \
Develop Develop Develop asset
top level realm documentation
architecture descriptions and test materials

Develop
architecture

\ specification

_/

Exhibit 20. Create Architecture Diagrams Process Tree

The primary purpose of the Create Architecture Diagrams task is to provide such a visual and
communicable rendition of the architecture. At present, there is no built-in support in EDGE/Ada
for automatically generating this material directly from the architecture. Hence, a domain engi-
neer must be tasked with producing it manually from the formal architecture.

With such a manual conversion process, there is a danger that the two forms of architecture rendi-
tion will become unsynchronized with respect to each other. Consequently, a staff member needs
to be assigned responsibility to periodically check to make sure that the forms of the architecture
are both describing the same architecture and to re-draw the diagrams as necessary to achieve

compatibility.

Approach

The ARCHITECTURE SPECIFICATION is supplemented by diagrams of the architecture. These
ARCHITECTURE DIAGRAMS show a graphical depiction of the architecture including how the
architecture is decomposed into REALMS and how realm COMPONENTS make use of other realms
within the architecture. SAAM diagrams (a diagramming method used in the SEI’s Software

40

STARS-PA19-5007/001/00 5.1.2 Create Architecture Diagrams

Architecture Analysis Method [8]) can be used to present a block diagram of the architecture. An
RLF (Reuse Library Framework) [21] representation of the architecture can also be produced,
generated automatically by EDGE/Ada from the ARCHITECTURE SPECIFICATION. The RLF repre-
sentation of the architecture can be used to support application engineers in their retrieval and
composition of assets from the asset base during the Apply Asset Base phase

The EDGE/Ada toolset can also provide its own tree-like description of the set of realms and
components. This tree view is used during system composition to show the application engineer
the set of available component choices. Interestingly, this view is not yet presented in EDGE/Ada
as a visualization mechanism to be used during architecture development. Consideration is now
being given to making this mechanism useful during architecture development.

When summary diagrams are being produced by hand, they can either be done before committing
the architecture in a formal specification (the ARCHITECTURE SPECIFICATION file) and so be used
to guide the development of the formal architectural description; or, they can be produced after
the formal architecture has been processed by EDGE/Ada. Either of these approaches is accept-
able and which is preferable depends on the visualization skills and needs of the domain engineer-
ing team.

Workproducts
M ARCHITECTURE DIAGRAMS

Exhibit 21 gives an example of an architectural representation that the Army STARS Demonstra-
tion project found useful as a communication mechanism in talking about the Emitter Location
Processing and Analysis (ELPA) domain architecture. This diagram was produced using Frame-
Maker. For a large architecture, several such pictures may be required. The small, solid color
boxes in the picture represent realms and the lines between boxes represent the potential for com-
ponents within the realm having the realms at the level(s) below it as realm parameters. Thus, the-
lines from the Fix_Calculations realm to Filtering, Fix_Math and
Coordinate_Transformations indicate that at least one component in Fix_Calculations
declares each of these as a realm parameter

The realms within an enclosing rectangle are roughly at the same level of generality in that they
deal with data at the same granular level. Exhibit 21 shows three such levels: Services Layer,
Computation Layer and the Data Access Layer.

In the ELPA architecture, there was only one planned communication mechanism, that of proce-
dure invocation with values returned either as function return values or through procedure param-
eters. As such simple lines drawn between realms indicate that the definitions of services in one
realm may invoke the procedural and functional interfaces of services in another realm in order to
complete the required computation. If several communication mechanisms are planned for the
architecture (e.g., tasks, remote procedure call, etc.) then several diagrams may be necessary for
the same segments of the architecture to represent the issues and alternatives being addressed
through the separate communication mechanisms.

Note that these diagrams are not meant as substitutes for design diagrams that might be used in
the development of the components themselves. Such diagrams are at a much finer level of detail
and can prove useful during component implementation. The diagrams here are architectural level
diagrams meant to supplement and support the formal language used in the ARCHITECTURE SPEC-
IFICATION.

41

5.1.2 Create Architecture Diagrams STARS-PA19-S007/001/00

Fix Calculations

. . Coordinate
Filtering Fix Math@Transformations

Vector & Matrix Math

. Session Manager
DF File Manager}DF Data Manager

Fix Manager

" Generic Database Primitives

Data Access Layer

Exhibit 21. ELPA Architecture Summary Diagram

When to Start

The production of architecture diagrams can begin at the same time as the Develop Top Level
Architecture task begins. Thus these two tasks have identical starting conditions.

Inputs

* REALMS. Realms are represented as boxes in the architecture diagrams produced during this
phase.

e COMPONENTS. Components within realms have various realm parameters. The existence of a
component in a realm with a realm parameter will generally lead to a line being drawn in the

diagram between the two realms.

* ARCHITECTURE SPECIFICATION. The Architecture Diagrams are supposed to provide visual-
ization aid and support for the domain architecture. Although early versions of these dia-
grams can be produced before the formal ARCHITECTURE SPECIFICATION is completed, there
must be final agreement between baselined versions of the formal architecture and the archi-
tecture diagrams. As such, the ARCHITECTURE SPECIFICATION can be considered an input to

this sub-task.

42

STARS-PA19-S007/001/00 5.1.2 Create Architecture Diagrams

Controls

* ARCHITECTURE CONSTRAINTS. The production of the architecture diagrams is “controlled”
by the same considerations that are applicable to the production of the formal ARCHITECTURE

SPECIFICATION.
Activities
» Produce Architecture Diagrams.

The methods used to produce the diagrams are highly dependent on the tool used to create the dia-
grams and whether the domain engineering team is using this activity as a lead-in or follow-on
activity to the production of the formal architecture. Briefly, the team should use whatever
approach they feel most comfortable with and which is compatible with the drawing or CASE
tool employed to actually make the drawings.

The team should be aware of what part of the architecture comes first in the architecture definition
effort: diagrams or formal architecture. It may also be possible to produce these two views of the
architecture as a tightly bound coordinated activity so that as understanding of, and detail in, the
architecture is added, the two views are modified accordingly at the same time.

» Verify consistency between Architecture Diagrams and ARCHITECTURE SPECIFICATION

No matter how the architecture diagrams are produced, their content must be evaluated and com-
pared to the information contained in the formal architecture specification. Since the formal spec-
ification is what is enforced by the EDGE/Ada toolset, this version of the architecture is the
official one. Even if the diagrams are produced in advance of the formal architecture, architecture
editing with EDGE/Ada may result in changes that need to be reflected back in the diagrams. If
the production of the diagrams lags behind the formal architecture, care must be taken that the
elements drawn in the diagrams and their interconnection accurately reflect the architecture itself.

This activity will need to be repeated as later phases of the DAGAR life-cycle lead to architec-
tural modifications. Most likely these changes will be handled directly through EDGE/Ada and so
the diagrams will then need to be edited to reflect the changes as they are made. A better solution
would be to have EDGE/Ada support some level of diagram generation from the formal specifica-
tion. Such an extension to EDGE/Ada may be added in a future release.

When to Stop

The production of architecture diagrams can stop at the same time as the Develop top level archi-
tecture task stops.

Guidelines

* Consider a three-layered TOP LEVEL ARCHITECTURE DESCRIPTION. Both the ELPA ASSET
BASE developed by the Demonstration Project and the avionics ASSET BASE addressed by the

Loral DSSA team show that a basic three-level layered architecture provides an effective
starting point for a DAGAR ASSET BASE ARCHITECTURE. This approach may be applicable
to a wide variety of domains.

As shown in Exhibit 21 on page 42 for ELPA, and Exhibit 22 for a web site domain being
built on top of the OpenRLEF, a three-layered architecture comprised of:

43

5.1.2 Create Architecture Diagrams STARS-PA19-S007/001/00

2

] '
,?////ﬁ Semantic Processing
| Layer

ﬁé"f Representation Layer
;//,, A 7 /:

Exhibit 22. SemWeb Architecture Summary Diagram

— an external interface layer through which client applications connect to basic ASSET
BASE services,

— amiddle core computational layer within which basic domain abstractions are processed,
and

— abottom data access layer through which client data is accessed as necessary to feed the
computational layer

has proven to be an effective organizational technique, especially in the early phases of archi-
tectural development. There eventually will be several internal REALMS that subdivide these
baseline layers (especially for the core and data access layers). As shown in Exhibit 21 for
ELPA, COMPONENTS for REALMS within a layer will in general require access to REALMS at a
lower level, but these access points should be controlled to avoid needless complexity or
unnecessary REALM-to-REALM interactions. If a domain is determined to require more than

three layers (e.g., it makes sense to stratify the middle layer to support information hiding ‘
concerns), access to REALMS more than one level removed from the current level should be -
questioned. An exception to this recommended restriction is access to REALMS in the data

access layer to provide access to persistent data within the client application.

* Decide on what definition activity comes first and stick to this decision. It is up to the team

performing architecture definition to decide which task comes first (formal architecture or

architecture diagrams) or whether a simultaneous evolution approach is preferable. But the
team should always be aware of what strategy is being followed and its procedures should

consistently mirror this strategy.

STARS-PA19-S007/001/00 5.2 Develop Realm Descriptions

5.2 Develop Realm Descriptions

Realm specification can begin as soon as enough confidence in the early phases of architecture
definition reaches the level that realm identities are stable enough that engineers can identify the
services and objects to be made available through the realm interface. For some of the realms in
the architecture, full details about these services may not be available until much later in the
DAGAR process when the impact of implementation choices begins to ripple back to the archi-
tecture itself. However, it would be a mistake to postpone realm definition activity until full
knowledge about what a realm needs to provide is available. It is better to treat the production of
realm descriptions as a prototyping activity where initial versions of realm descriptions for all of
the realms initially identified in the ARCHITECTURE SPECIFICATION are created and processed via
the EDGE/Ada toolset. As details are added, or specification elements change, the corresponding .
REALM DESCRIPTION can be edited and re-processed. While the ARCHITECTURE SPECIFICATION
shows the major elements that make up the architecture in the form of realms, what is contained
within each of the elements is external to this specification. This detail is what is communicated in
each REALM DESCRIPTION.

/ Define asset base architecture \
Develop Develop asset
top level documentation
architecture and test materials
Develop Create
architecture architecture

k specification diagrams /

Exhibit 23. Develop Realm Descriptions Process Tree

The primary purpose of the Develop Realm Descriptions task is to use the facilities of EDGE/Ada
to elaborate to the extent possible what each realm in the architecture is expected to provide to the
other realms in the architecture. The Realm Description language supported by EDGE/Ada is
based on the Ada language and the content and scope of a REALM DESCRIPTION will be similar to
what is seen in an Ada package specification. As such, a list of operations is given, including the
parameter profile expected for each operation, along with a set of basic data type abstractions that
define the kind of objects that the realm expects to process and produce.

Since realm descriptions will wind up looking a lot like Ada package specifications, a danger
exists that as engineers will begin to view them as synonymous. There is one major difference in
how Realm Descriptions are constructed when compared to Ada package specifications. Realm
descriptions will contain various “holes” where details concerning how a capability to be offered
through the realm interface is actually going to be provided. Each such hole amounts to an imple-
mentation detail that the realm delegates to a component to specify. Because a component in all
cases is a realm implementation, it is a component’s responsibility to provide these implementa-
tion details. Every hole in a realm specification corresponds to a hole filler clause in a component
specification. If the hole represents an optional part of the realm, then the hole filler may be
empty.

In designing realms and completing their descriptions, a key challenge will be to anticipate places

where variations on how some piece of interface capability can be completed. A hole is left in the
REALM DESCRIPTION that can accommodate a component’s ability to provide different choices

45

5.2 Develop Realm Descriptions STARS-PA19-S007/001/00

and therefore different ways to fulfill these variations. Training in the design of software abstrac-
tions that support this kind of extended configurability is required. A person used to designing
standard Ada package abstractions may not easily shed the systems mindset that such package

~ design experience imprints on the engineer. Knowing when (and how) to leave something out is
just as important as knowing when to leave something in.

Approach

Realms are described in REALM DESCRIPTIONS written in an extended Ada notation that includes
holes that can be filled in by components. A partial REALM DESCRIPTION for a realm providing
matrix processing services is shown in Exhibit 24. The explicit areas in a realm that components
can use to tailor the implementation of the realm are indicated by identifiers enclosed in square
brackets (e.g. [Matrix_ Index Declaration] and [Matrix Declaration]). The identifi-
ers enclosed in double curly braces ({ {}}) provide additional substitution points that are sup-
ported by EDGE/Ada on an architecture-wide basis, rather than for individual components. The
EDGE/Ada toolset processes the REALM DESCRIPTION to place it in the EDGE library.

Knowing the major modules that make up the domain architecture marks the beginning of the
architecture development process. The next step is to determine what features and capabilities are
encapsulated in each of the realms. The major source of information used to make this determina-
tion is once again the ASSET BASE MODEL. Exemplar systems used in the production of this
model may in fact provide packaging and interface information that will be helpful in formulating
draft versions of the REALM DESCRIPTIONS. Work on producing the REALM DESCRIPTIONS should
not begin until the ARCHITECTURE SPECIFICATION as a whole has stabilized and undergone signif-

L - This is a realm that defines operations between 2x2 symmetrical
matrices;

- 3x3 symmetrical matrices; 2x2 non-symmetrical matrices;

-~ 3x3 non-symmetrical matrices;

“With {{ELPA_Support}}; use {{ELPA_Support}}:;
with {{Base_Support}}; use {{Base_Support}};

Krealm package Matrices is
[Matrix_Index_Declaration]

[Matrix_Declaration]

function "** (Left, Right : in Matrix)
return Matrix;

function "*" (Left : in Matrix;
Right : in [Vector_Declaration])
return [Vector_Declaration];

function "*" (Left : in [Vector_Declaration];
Right : in Matrix)
return [Vector_Declaration];

Exhibit 24. Partial Matrix Processing Services Realm Description

46

STARS-PA19-S007/001/00 5.2 Develop Realm Descriptions

icant internal review. Beginning work on realm interface definitions too soon raises the potential
‘ of unnecessary or unused work.

Workproducts

B REALM DESCRIPTIONS

As illustrated in Exhibit 24, the basic format of a REALM DESCRIPTION has the appearance of an
Ada package specification. The most important difference to note in comparison to Ada package
specifications are the uses of identifiers enclosed in a pair of single brackets ([1) or double curly
braces ({{}}) that are used to mark the appearance of substitution points (or holes) that other
parts of the architecture definition have the opportunity of providing values for. The example
shows three such holes that components in the realm are expected to define: one for a matrix
index type, one for a matrix description that must include the Ada definition for a Matrix type
and one for a Vector type identified by the identifier Vector_Description. Components will
provide definitions for each of these named substitution points in the form of Ada code fragments
that will allow the Ada compilation of the REALM DESCRIPTION after the substitutions are made
(see Exhibit 32, “Complete Matrix Component Specification,” on page 71). The content of these
substitutions will vary from component to component.

In addition to the component-specific holes, there are architecture-wide substitution points
(delimited by a double pair of braces) that EDGE/Ada will provide values for. One such hole is
identified as ELPA_Support and, as can be seen from the surrounding syntax, names an Ada
package that is “withed” to provide the definition of auxiliary services needed to support the rest
of the REALM DESCRIPTION (note that there are no statements shown in Exhibit 24 that actually
use definitions that are contained in this support package).

. When to Start

* ARCHITECTURE SPECIFICATION sufficiently complete. While the ARCHITECTURE SPECIFICA-
TION does not need to have been completely fleshed out, it must be in a state that reasonable
certainty exists regarding the identity of some key realms in the architecture and possible
connections between components in these realms and other realms. REALM DESCRIPTIONS
begin to add a layer of detail into the architecture that can require some significant design
effort. It would not be economical to have the expenditure of this effort not lead to results that
can be carried forward into the next phases of the domain engineering project.

* Coordination with Asset Implementation effort determined. In order for the Develop realm

descriptions task to lead to compilable Ada, there must be at least one component available
for each realm to provide hole fillers. If these components themselves rely on their own realm
parameters to complete the definition of any hole filler, then at least one component for each
of the realm parameters must also exist. Thus, if it is desired that early-on in the realm defini-
tion effort, a translation to Ada (using the services provided by EDGE/Ada) is desired, suffi-
cient components must have been added, at least down to the COMPONENT SPECIFICATION
level, to enable the production of Ada code. The domain engineering project needs to work
out what it will do in the face of such dependencies and plan actions accordingly.

- Inputs

* ARCHITECTURE SPECIFICATION. Realms only exist in the context of the architecture and
REALM DESCRIPTIONS can only be processed successfully if their connectivity to the archi-
tecture is adequately documented by the current ARCHITECTURE SPECIFICATION.

47

5.2 Develop Realm Descriptions STARS-PA19-S007/001/00

* ASSET BASE MODEL. This model provides information about exemplar systems as well as
customer needs and wants regarding asset base services. Knowledge of both of these areas
will be useful in making architectural decisions including the structure and content of REALM .

DESCRIPTIONS.

Controls

* ARCHITECTURE CONSTRAINTS. The production of the REALM DESCRIPTIONS is “controlled”
by the same considerations that are applicable to the production of the formal ARCHITECTURE
SPECIFICATION. How features and capabilities are arranged into layers, and how these layers
are interconnected to one another, may be influenced strongly by many factors. The purpose
of internal and external ARCHITECTURE CONSTRAINTS, at least as formulated by ODM, is to
record and weigh such factors.

Activities

» Write each REALM DESCRIPTION

The actual task of completing a REALM DESCRIPTION is not unlike that of completing an Ada
package specification and so design techniques practiced within the organization can be applied.
The real problem to be addressed is that each realm represents not just one package but potentially
many different packages with different behaviors and performance characteristics. The designer
must anticipate and accommodate the variability that asset base customers may find useful at each
level in the architecture and leave room in the definition (through the holes as discussed above) to
provide this variability.

» Verify each REALM DESCRIPTION

While EDGE/Ada can check the identity of the realm (e.g., the realm name as stated in the Realm’
Description) with respect to the EDGE library, much of the content of a REALM DESCRIPTION is
Ada code that is not parsed by the EDGE/Ada toolset. EDGE/Ada leaves the processing of these
details to the Ada compiler. In order that an Ada compiler pass over the REALM DESCRIPTION can
be successfully completed, there must be substitutions made for each of the holes in the descrip-
tion. Such substitutions require that at least skeletal versions of COMPONENT SPECIFICATIONS
exist in the architecture. These skeletons can be written here for realm verification purposes or
could be developed as an early activity within the Develop Component Specifications sub-task.

When to Stop

¢ Asset Base Architecture draft complete. The asset base architecture consists of both the
ARCHITECTURE SPECIFICATION and a collection of REALM DESCRIPTIONS. Both of these
products must be sufficiently mature so that development activities within the Implement
Asset Base phase of DAGAR can productively take place. Work on the architecture can be
resumed as conditions warrant but the initial set of activities performed here must produce
sufficiently many and complete REALM DESCRIPTIONS for asset base implementation activi-

ties to begin.

* Checkpoint with Asset Base Implementation effort reached. As part of the overall DAGAR-
based domain engineering effort, production of the architecture and in particular the comple-

tion of Realm Descriptions can be viewed as an asset base design activity that is coordinated
with a set of implementation activities. As desired, a set of checkpoints can be established at
which major effort on the project is transitioned between the two phases with perhaps alter- ‘

48

STARS-PA19-5007/001/00 5.2 Develop Realm Descriptions

nate checkpoints causing alternate emphasis being placed on design and implementation
activities. When such a checkpoint is reached when the end of major period of design activity
is indicated, a transition to implementation effort, using the latest architecture results, can
occur.

Guidelines

* Consider evolutionary development of realms. There are many opportunities with DAGAR

to adopt an iterative, evolutionary approach. The production of REALM DESCRIPTIONS, in
conjunction with the necessary component material to evaluate the adequacy and correctness
of these materials, is a natural process that helps insure that sufficient baseline material is in
place to permit testing. Synchronizing realm definition activities with evolution of the archi-
tecture itself is also highly recommended so that neither activity produces material that needs
to be discarded due to lack of compatibility.

* Use existing exemplar package interfaces as examples. While raw source code is not likely to

be directly relevant, a small amount of reverse engineering of exemplar work products that
addresses the issues of packaging of services, and communication paths among core sets of

“services, can be used to create draft realm designs and candidate components that have anal-

ogous connections to other realms. While it would be preferable to have one or more exem-
plars that have Ada implementations, any implementation for which adequate design
documentation exists, or can easily be recovered, can be extremely useful in the early stages
of the Develop realm descriptions task. :

* Learn and apply the EDGE/Ada toolset to its fullest extent. The EDGE/Ada toolset was

developed to be used in conjunction with the organization’s chosen Ada compiler. Ada-spe-
cific details are checked by an application of the compiler to the REALM DESCRIPTION after
the holes contained in the description have been replaced by component-defined Ada code
fragments. EDGE/Ada is used to identify which components are to be used to provide the
substitution values for holes in a description and the Ada compiler can be invoked automati--
cally to check the result after the actual Ada code is generated that merges the REALM
DESCRIPTION with the information supplied through the COMPONENT SPECIFICATION. Army
STARS demonstration project experiences suggest that significant attention should be given
to training the domain engineering staff in how to merge what they know from past usage of
the Ada language tools with a complete understanding of the capabilities provided through
EDGE/Ada.

49

5.3 Develop Architecture Documentation and Test Materials STARS-PA19-S007/001/00

5.3 Develop Architecture Documentation and Test Materials

Within the Define asset base architecture phase of DAGAR, domain engineers are specifying the
core structure of the asset base. It is important that quality assurance and documentation activities
at the architectural level be carried out in conjunction with architecture development. ARCHITEC-
TURE DOCUMENTATION AND TEST MATERIALS will form the basis for the component based mate-
rials that will be produced during Develop asset documentation and test materials (see

Section 6.2.3, “Develop Asset Documentation and Test Materials”). Documentation materials can .
be produced in template forms that will be elaborated as components are completed. Black box
test cases and plans that identify testing concerns at the realm interface level can be developed
that are applied to all components as they are completed. Test materials can be produced that indi-
cate the extent to which the variability supposedly implemented in the various component imple-
mentations of a realm is actually achieved.

Documentation and test materials supplement the realms and later, the components, to provide the
application engineer with a complete package of supportive material about the assets that can be
obtained from the asset base. Documentation at the architecture level can include documentation
about the overall architecture, and the realms and components within the architecture. Test mate-
rials can include test plans, test cases, and test harnesses. Documentation and test materials should
first be developed during definition of the asset base architecture and then extended during imple-

mentation of the assets.

f Define asset base architecture \
Develop Develop Develop asset
top level realm documentation
architecture descriptions and test materia
Develop Create
architecture architecture

\ specification diagrams J

Exhibit 25. Develop Architecture Documentation and Test Materials Process Tree

The primary purpose of the Develop Architecture Documentation and Test Materials task is to
produce the material as described in the name of the task. These materials are produced for the
architecture itself, as documented in the ARCHITECTURE SPECIFICATION, for every realm, and for
every component. They are used during asset development to understand the intended scope and
capabilities of all of the architectural elements and to verify correctness and performance of the
realms and components

Approach

ARCHITECTURE DOCUMENTATION and TEST MATERIALS supplement the realms and components
to provide the application engineer with a complete package of supportive material about the
ASSETS available from the ASSET BASE. Documentation at the architecture level can include doc-
umentation about the overall ASSET BASE ARCHITECTURE and documentation about the realms
and components within the ASSET BASE ARCHITECTURE. TEST MATERIALS can include test plans,
test cases, and test harnesses. ARCHITECTURE DOCUMENTATION and TEST MATERIALS first devel-

50

STARS-PA19-5007/001/00 5.3 Develop Architecture Documentation and

oped during the Define Asset Base Architecture phase will be extended during the Implement
Asset Base phase.

Even during the early phases of domain architecture definition, attention must be given to antici-
pating the information needs of both the team members responsible for asset implementation as
well as the application engineer customers of asset base. Materials developed here should be
viewed as seed materials for the final documentation and test products that will be delivered to the
application engineer along with the assets themselves. Some of the information first developed
and recorded during this task will be packaged for use as part of the ASSET BASE INFRASTRUC-

TURE.

A primary source of both documentation and test materials is legacy system artifacts. Even
though the domain architecture may be the source of a substantially new implementation of appli-
cation functionality, this new implementation may be used in application circumstances that have
been largely unchanged from those surrounding earlier versions of the application. As such, use-
ful material for documentation and testing purposes may already exist among the domain infor-
mation sources gathered during descriptive domain modeling. Where significantly new
functionality is added, or innovative algorithms are designed, the corresponding test and docu-
mentation material will have to be developed by the engineer. The usual development methods for
such material that is in place within the organization can be applied in producing this new mate-
rial.

Workproducts
B ARCHITECTURE DOCUMENTATION

Documentation should be produced in formats that are already in place within the development
organization. Supporting material meant for use by application engineers in widely differing
usage contexts should actually be made available in a number of different formats. Many docu-
mentation development systems allow for the export of material in a number of standard formats
that can then be imported to, and accessed from, tools available to the application engineer. Archi-
tecture documentation will primarily be concerned with the architecture itself as defined in the
Architecture Specification and with documenting the functionality, behavior and connectivity
options for each of the realms of the architecture. In addition, skeletal forms of component docu-
mentation will also be developed in this task.

B TEST MATERIALS

Test materials include test plans, test cases, test harnesses, expected test results and test result
comparers to compare actual results to expected results. Test harnesses will often take the form of
special components that are developed as part of the architecture. Such components can be allo-
cated either to existing realms or be placed within special test realms inserted within the architec-
ture to explicitly support asset base testing. Such test realms are not meant to contain components
expected to be of use to an application engineering customer except to support other segments of
the architecture. The initial identification and positioning of these realms within the architecture
should be planned as a necessary and vital part of Architect Asset Base. Further elaboration of
these realms and the specialized test components that belong to them will occur during the
Develop Asset Documentation and Test Materials.

When to Start

 Start of Define Asset Base Architecture. This task is best approached as an on-going task as

51

5.3 Develop Architecture Documentation and Test Materials STARS-PA19-S007/001/00

architecture development proceeds. So even when the Develop Top Level Architecture task

first begins, work on production of the necessary supporting materials can get started. Sup-
porting materials can then be gradually expanded as more intensive realm development gets .

underway.

Inputs

e ARCHITECTURE SPECIFICATION. From an architectural perspective, this product is the'key
thing that is being documented and must be verified. It should be viewed as the primary entity
for which supporting materials are being developed during this task.

e REALM DESCRIPTIONS. REALM DESCRIPTIONS present the interface elements available for
each realm. As such, these elements must be reflected in all of the test plans that are begun
during this task and each element must be suitably documented so that it can be effectively
implemented and invoked.

* ASSET BASE MODEL. This model provides information about exemplar systems as well as
customer needs and wants regarding asset base services. Knowledge of both of these areas
will be useful in documenting architectural decisions including the structure and content of
REALM DESCRIPTIONS. Test cases that verify that customer needs and expectations are met
can be framed using the content of this model.

* ASSET BASE DOSSIER. The ASSET BASE DOSSIER is the full compendium of all exemplar
material that might be of use in constructing the asset base. In particular, exemplar documen-
tation and test products will be available in the dossier. These can serve as the basis, or at
least as a touchstone for comparison, for the creation of analogous architectural products.

Controls

* ARCHITECTURE CONSTRAINTS. The production of documentation and test materials is con-
trolled by the same considerations that are applicable to the production of the formal ARCHI-
TECTURE SPECIFICATION and REALM DESCRIPTIONS. How features and capabilities are
arranged into layers, and how these layers are interconnected to one another, may be influ-
enced strongly by many factors. The purpose of internal and external ARCHITECTURE CON-

" STRAINTS is to record and weigh such factors. These factors will also apply to how test plans
and documentation are created, and how they are related to the architectural elements that

they support.
Activities

Documentation and testing should be done hand-in-hand with the development of the asset base
architecture itself. The purpose of this task in DAGAR is to highlight its importance in producing
a high-quality architecture. At this time, the EDGE/Ada toolset does not yet provide any enact-
ment mechanisms or work product support for the creation of either documentation or test materi-
als. These must be created and stored using the organization’s available software engineering
environment services.

» Begin Architecture Documentation.

In all aspects of DAGAR-based domain engineering, the domain architecture is the key to pro-

ducing usable and understandable results. Therefore documentation activities should begin with a

careful consideration of the current ARCHITECTURE SPECIFICATION along with the associated

architecture diagrams. These diagrams are in fact the first form of architecture documentation. As .

52

STARS-PA19-5007/001/00 5.3 Develop Architecture Documentation and

necessary, explanatory material is added to document the information flow through the architec-
ture and how the various components within the realms direct or re-direct this information flow.

Holes in Realm Descriptions provide opportunity for architecture variation and the effect and pur-
pose of such holes need to be defined so that component implementation can proceed accordingly.
Documentation at the component level can be viewed as describing how these holes were filled
and the opportunities realized. If component development reveals flaws in the architectural
design, a feedback loop in the DAGAR process will provide the opportunity to correct these flaws
and the corresponding architectural level documentation must be corrected as well. Since docu-
mentation will primarily exist in template form using the locally available documentation mecha-
nisms, engineers will use documentation processing tools to open the templates, manually insert
the component-dependent elaboration of the template, and the save a copy as the actual document
output of the associated implementation activity.

» Review ASSET BASE DOSSIER for possible source material.

While DAGAR domain engineering is based on particular specification and implementation lan-
guages supported by the EDGE/Ada toolset, detailed approaches and implementation concepts
will often be suggested by previously implemented systems. If these systems were produced
using accepted development practices, there will be significant supporting material that was saved
as part of the legacy materials from these efforts. Just as the design and implementation of parts of
these systems can be used to pattern component designs and implementation, the supporting
materials can also be used. If the legacy documentation exists in an electronic form compatible
with that being used to support DAGAR, it can be processed electronically and provide valuable
starter and supplementary material. Similarly, legacy testing materials (especially test plans and
test data) can be used as stepping stones to producing testing material at the architectural level.
This material is later refined and extended during component implementation.

» Begin and extend architecture testing framework.

Testing is vital to the success of any implementation endeavor. As such, testing must be consid-
ered early in the architecture development effort. Most DAGAR-produced asset bases will
include at least one, and perhaps several, realms in which the presence of components solely
designed to support the testing of other parts of the architecture are indicated. Testing activity, and
the production of testing materials, should be focused on the production of these components and
creating supporting material (such as test plans and data) for their use. Early attention should be
paid to the design of such components and how they can effectively be used to execute testing
scenarios based on test data developed during this task. Production of new testing materials
should stress effective use of these testing parts and provide data that supports understanding how
components compare to one another when accessed from these test components. Individual com-
ponents can be expected to have certain desired properties and plans and test cases to demonstrate
these properties must be developed along with the components themselves.

When to Stop

* Architecture documentation sufficiently complete. Stopping the documentation process will
coincide with the stopping of the architecture development process. If these activities are

synchronized with one another, documentation has been proceeding in conjunction with
architecture development. If schedules or staffing concerns have led to these activities being
de-coupled, attention must be given to reviewing documentation status periodically to insure
that and disconnects and inadequacies are addressed.

* Testing materials in place to support asset implementation and application. Asset production

53

5.3 Develop Architecture Documentation and Test Materials STARS-PA19-S007/001/00

processes will regulate the application of test materials internally to asset development. Test-
ing occurs on a continuous (or at least periodic basis) and materials must be in place to sup-
port this testing. The domain engineer must also work to produce testing materials of use at
application development and integration time. This means that some understanding of
expected usage contexts is required to prepare appropriate testing materials. The Develop
Architecture Documentation and Test Materials task must continue until sufficient material
exists for asset base implementation and the foreseen usage contexts are supported by test

" materials that will be useful in these contexts. Since later architectural modifications may
occur, it may be necessary to return to the task to expand the test materials accordingly.

Guidelines

* Follow incremental pattern. The production of supporting materials should follow the same
pattern as that followed during the production of the ARCHITECTURE SPECIFICATION and

REALM DESCRIPTIONS. Echoing the advice given in these task descriptions, the domain engi-
neer should plan the construction of the asset base so that a thread through the asset base is
produced as early as possible and that additional layers and more completely functional com-
ponents are considered as architecture understanding increases. As these initial realms and
components are created, the supporting material for these components should be produced
along with them rather than be postponed until the end of the creation activity. Once basic
materials exist, they can be refined and extended according to the changes made to the archi-
tecture itself.

* Ensure sufficient staff communication. While a small project may be run with only a small
number of engineers performing all activities in conjunction with architecture development
and asset base implementation, for larger projects, staff size increases can present additional
problems that need to be worked out. One of these problems is that staff members will often
have specialized duties and expertise. Careful hand-offs must be arranged as these duties
overlap. The production of documentation and testing materials is often allocated to special-
ists in these areas and so as development of realm and component drafts and versions occurs,’
these products must be handed over to those with expertise in documentation and testing.

Communication among staff members needs to be facilitated and interim documents such as
notes, trouble reports, informal test data, etc. needs to be made available as raw material for
the Develop Architecture Documentation and Test Materials task. EDGE/Ada as currently
configured does not offer significant support in this area, so other development platform ser-
vices need to be selected and applied in support of this communication.

54

STARS-PA19-S007/001/00 6.0 Implement Asset Base

6.0 Implement Asset Base

The Define Asset Base Architecture phase of the DAGAR process has produced a formal architec-
ture specification along with the specification of a set of major modules (called realms) into which
the major areas of functionality to be provided by the asset base have been partitioned. The ASSET
BASE ARCHITECTURE lays out what the key architecture variants are — these are provided by the
components that implement the functionality defined by each realm — and depending on how
these components are combined, various system architecture possibilities can emerge from the
asset base architecture. The realm descriptions define the services and objects that are encapsu-
lated within the realms themselves.

mplemen i
assets infrastructure

mplementatio i

S
Develop Develop asset
component componenti: documentation
specifications bodies #::and test materials

Exhibit 26. Implement Asset Base Process Tree

The primary purpose of the Implement Asset Base phase of DAGAR is to define and complete
implementations of the DAGAR components which exist within each realm. In DAGAR, such
component implementations include code fragments for substitution points defined in the realm
declarations and complete code, using an extended Ada syntax, which specifies how the services-
encapsulated in the realm are accomplished. Besides the components themselves, this phase also
produces supporting materials such as test plans, documentation templates, and architecture usage
rules that help an application engineer develop subsystems in terms of the architecture. These
rules are used by the EDGE/Ada toolset in providing system composition guidance to application
engineers.

A key challenge in completing this phase will be to manage the tension between architecture dis-
coveries that are made as a result of working on the implementations and a desire to immediately
adjust the architecture based on those discoveries. There indeed will be a strong feedback current
between Define Asset Base Architecture and Implement Asset Base but the activities in each of
these phases must not be allowed to interact arbitrarily.

Approach

Once the architectural framework is in place, the detailed work of planning and implementing the
assets and infrastructure that collectively make up the asset base can begin. Asset base implemen-
tation includes planning the asset base implementation, implementing assets, and implementing
the infrastructure that will assist application engineers in selecting assets.

Exhibit 27, gives an overview of the Implement Asset Base phase. While the primary activity of
this phase is implementation, it should not be understood as the simple production of code such as
takes place during the implementation of a single application in Ada. Rather, implementation
must take into account a potential multitude of application contexts within which assets available

55

6.0 Implement Asset Base STARS-PA19-S007/001/00
'Cust.omt?r Project Technology Asset base
3Pl§’i1dca]t1°" resources constraints model
scl ules J
(] [
Asset base Plan Infrastructure implementation plan
dossier ™ asset base i lan
: | implementation
2.1| Asset
b implementation
Asset base : plan
architecture
Implement
Exei;nplar assets > Assets
system
- artifacts 2.2
Asset base
_p| Implement j infrastructure
Infrastructure
N\
23 T__, Asset
constraints
-
EDGE
Exhibit 27. Implement Asset Base IDEF Diagram
p o L1ag

through the asset base can be applied. But these contexts of use cannot be arbitrary; they must fit
within the scope of the asset base architecture. ‘

The DAGAR approach is based on the following two tenets:
* An asset base, devoid of its architecture, is not intended to be generally useful and reusable.

* Asset base success cannot be measured apart from the architecture within which it was cre-
ated.

These ideas may be rather startling since some reuse literature gives the impression that reuse of
components (assets) in arbitrary contexts is what is important. DAGAR asserts that assets are
constructed to be useful in a specific domain and architecture context. They are not considered to
be reusable outside this context, although an asset base user would not be prevented from extend-
ing the area of applicability. The domain engineer is concerned only with supporting explicit con-
texts and has nothing to say outside of these contexts. DAGAR-produced source code is
generated from higher-level specifications (realms and components) that are part of an architec-
tural framework. Generation of compilable and linkable source code takes place using properties
and relationships that are recorded within the framework. The user must make certain choices in
order to produce products that are ready for use within a particular system. With a sufficiently rich
and variable architecture, there are many different system contexts within which the assets avail-
able through the architecture can be used.

56

STARS-PA19-S007/001/00 6.0 Implement Asset Base

Results

Another important aspect of the DAGAR approach to implementation is that the process includes
more than completion of component specifications and bodies. DAGAR requires that up front
effort be applied in developing both assets, supporting materials such as documentation and test
plans, along with component composition rules. The payoff for this extra effort comes from being
able to automate generation of subsystem after subsystem from the domain asset base. While
there are costs for establishing an asset base, there will be significant application cost reductions
for subsequent systems using the domain. With the infrastructure provided by EDGE/Ada for
selecting components, new subsystems can be created with relatively little effort and therefore
with great cost reductions compared to producing the subsystems from scratch, using traditional
application engineering methods. The Army STARS Project Experience Report [16] identifies
significant cost saving opportunities that can be realized using the DAGAR approach. Each new
application of the domain will increase the reliability and stability of the asset base as assets are
reused and repeatedly tested in a variety of circumstances.

Process

As shown in Exhibit 27, the Implement Asset Base phase consists of three main sub-processes:

* In Plan Asset Base Implementation, domain engineers consider the best way to complete the
implementation of the components identified as being part of the architecture. These consid-
erations include which of the components to implement first, whether it is better to take a
breadth-first vs. depth-first approach to the implementation of components, and what are the
minimal supporting materials (test plans, test cases, documentation templates, etc.) required
for each component. Plans must also include how and when to complete the component com-
position rules that help application engineers to decide which components are to be extracted
from the asset base.

e The primary goal of the Implement Assets sub-phase is to complete the extended Ada defini- .

tions of the components that form the core of the Asset Base itself. These definitions include
component-specific tailoring of the realm specifications produced during the Define Asset
Base Architecture phase (these are the EDGE/Ada component specifications) and the specifi-
cation of the details of how the component provides the services required of the realm to
which the component belongs. Components can use the services available in other realms if
they are declared to have realm parameters within the ARCHITECTURE SPECIFICATION. This
sub-phase is also the site where asset base supportive materials such as test plans and cases
are developed.

* In the Implement Infrastructure task, domain engineers produce extensions (if any) to the
EDGE/Ada toolset along with data to be made available to application engineers as they
interact with the toolset to obtain assets for use as part of the application being built. Prima-
rily, this infrastructure data takes the form of component composition rules that prevent any
inappropriate component interactions and/or connections from occurring during application
development.

Sequencing

* Basic Sequence. In most cases, the Plan Asset Base Implementation sub-phase should be
completed before the other two sub-phases begin. In particular, any phasing strategy covering
the sequencing and completeness of component development should be understood before
asset implementation gets underway in earnest.

57

6.0 Implement Asset Base STARS-PA19-S007/001/00

e Co-development of assets and infrastructure. Since many component composition rules
involve either mandatory or prohibited relationships among particular components or groups

of components, it may be preferable to address the creation and precise formulation of these
rules in concert with the development of the components themselves. If there is a delay

between asset and infrastructure development, domain engineers should be careful to record
any insights or concerns regarding component interaction for later use during the Implement

Infrastructure task.

» Toolset-driven asset development. The middle sub-process in the Implement Asset Base
phase is directly supported by the EDGE/Ada toolset while the other two sub-processes are
not directly supported. As such, there may be a tendency to let the tool support overly control
the major activities of this phase of DAGAR. There must be sufficient attention paid to all
three major sub-processes and the planning results must be respected as asset base core

development is carried out during this phase.

58

STARS-PA19-5007/001/00 6.1 Plan Asset Base Implementation

6.1 Plan Asset Base Implementation

Planning for asset base implementation involves selecting the technology to apply in the develop-
ment of each asset, planning the implementation of assets, planning for documentation, and plan-
ning the test and validation strategy for the assets. Implementation planning includes determining
the optimum strategy for incrementally implementing the assets and for maximizing the use of
legacy artifacts as much as possible. Factors to be considered include time criticality for provid-
ing the assets to application engineers in need of the domain functionality.

Use of DAGAR constrains the method of asset development inasmuch as DAGAR itself is based
on the use of generation technology (in particular, the EDGE/Ada toolset) rather than manual con-
struction of assets. Planning must therefore focus on how to best produce components to support
this basic generative approach. While a generation approach might not be suitable for every
domain, a significant number of domains can effectively be served with the application of
DAGAR and its supportive toolset.

Another consideration to be made during planning is the infrastructure that will be provided for
application engineers to allow selection of assets from the asset base in a manner appropriate to
their application. The EDGE/Ada toolset provides tools to allow the application engineer to auto-
matically select assets based on the asset base architecture. :

f Implement asset base \

Plan asset Implement _ Implement
base assets infrastructure
Develop Develop Develop asset
component component documentation
\ specitications bodies and test materials /

Exhibit 28. Plan Asset Base Implementation Process Tree

The primary purpose of the Plan Asset Base Implementation task is to consider the ASSET BASE
ARCHITECTURE from both development and usage perspectives to identify and arrange a set of
component development activities that will produce both assets and supportive materials in a
time- and cost-effective manner. The plan must consider both who will be using the assets and
when the assets will be needed. For a complex asset base, with many realms and components, it
will likely be the case that the completion of asset base products can be staged in a way that
accommodates domain engineering resources and asset base customer needs. The various plan-
ning documents produced in this task are targeted to match development resources with identified
and anticipated asset base customer needs.

The use of DAGAR in one sense contradicts late binding of asset implementation technology
choices to individual assets. By giving up late binding time, added support for application engi-

- neering in terms of the asset base can be provided. Domain engineers require sufficient training in
the methods of generator-based engineering in order to be successful. By grounding the syntax
and semantics of the component specification language in Ada, it is expected that engineers with
Ada development backgrounds will find transition from Ada to the use of DAGAR to be natural
and productive.

59

6.1 Plan Asset Base Implementation STARS-PA19-S007/001/00

Approach

Although DAGAR presupposes a technology for component implementation, there are still sig-
. nificant choices to be made regarding the sequence and pattern of component development activi-
ties. These choices are facilitated by the following suggestions:

* Prioritize component development. In the case of several distinct application engineering
customers, decisions regarding which of these customers should have highest priority access

to components, and when this access is required, are necessary.

 Consider legacy system artifacts. Where significant legacy system artifacts exist that conform
to the essential architectural principles identified during the Define Asset Base Architecture
phase, it may be possible to reuse adapted versions of these artifacts during the Implement
Asset Base phase. The planning task should identify these artifacts and consider how and

when they can be adapted.

* Incrementally build advanced components from simpler ones. Where several components in
the same realm can be designed as successively refined or enriched versions of each other, the
simplest component should be created first, with subsequent versions created after the sim-
pler one has been completed and preferably tested. These simpler components should be
retained as viable architectural entities even when no currently identified customer exists for
such a component. They are useful for testing other parts of the architecture.

* Develop assets and infrastructure in parallel. While it may not always be the case that asset

base utilization infrastructure (e.g. component composition rules) can be developed in paral-
lel with the assets themselves, it is still a good idea to plan for this kind of coincidental devel-
opment. Component interaction constraints will be clearest while the components are under
development and these constraints should be formalized as close as possible to their determi-
nation.

Workproducts

B ASSET IMPLEMENTATION PLAN

This plan contains a development and delivery schedule for each component in each realm in the
current ASSET BASE ARCHITECTURE. As much as possible, this plan should carefully and pre-
cisely identify when-needed-by and when-finished-by dates for these components as well as
resource estimates (e.g. person-hours) required for completion of each component. When specific
customers have been identified for components, these customers should be identified by name and
(when possible) where in the customer’s application development life-cycle (e.g. requirements,
design, code, and test) a subsystem made up of components within the architecture is needed. An
integration strategy for incorporating the subsystem in the larger application should be included if
the application’s utilization requirements are sufficiently clear in advance. All resource estimates
should take into account time and effort needed to document and test the components in their
architectural context, but this plan can defer details to the other plans produced during this task.

B DOCUMENTATION AND TEST PLAN

This plan supplements the ASSET IMPLEMENTATION PLAN and describes testing and documenta-
tion methods and techniques to be followed during Implement Asset Base. The level of documen-
tation and testing to be provided should be included in this plan as well as the available resources
(e.g. from legacy artifacts and from the Define Asset Base Architecture phase) that can be used for
testing and documentation purposes during component implementation.

60

STARS-PA19-5007/001/00 6.1 Plan Asset Base Implementation

B INFRASTRUCTURE IMPLEMENTATION PLAN

Asset Base Infrastructure in DAGAR is primarily identified with the EDGE/Ada toolset and the
support that is provided by this toolset for domain and application engineering. Any known mod-
ifications or extensions to this toolset that have been identified during architecture definition or
planning for this sub-phase should be given in the INFRASTRUCTURE IMPLEMENTATION PLAN. It
will normally be the case that few, if any, modifications will be required in the toolset. However,
the production of specific data structures that are used by the toolset should be detailed in this
plan. In particular, component composition rules that limit how components can be put together in
terms of the architecture are required and the development of these infrastructure elements should
be planned for and scheduled in time to support expected asset base customers.

When to Start
* ARCHITECTURE SPECIFICATION and REALM SPECIFICATIONS completed. In order for the

development of components in DAGAR to commence, their architectural underpinnings
must be understood. In DAGAR, these underpinnings are provided by the ARCHITECTURE
SPECIFICATION and the various REALM SPECIFICATIONS that are produced during Define Asset
Base Architecture.

While a spiral-form of asset base development is possible where some component develop-

“ment begins before the architecture is finalized, there should be enough of the architecture
defined so that the component-to-realm interconnectivity supported by DAGAR can be used
to establish the necessary associations. For those components with bodies under develop-
ment, the corresponding realm specification must also be complete. Planning can identify
those realms and components that are candidates for spiral-based development.

* Domain Engineering staff with component development skills available. The nature of
DAGAR-based asset base construction allows staff with different skill sets and backgrounds

to be assigned to the various phases and tasks of asset base implementation. The earlier
phases of asset base engineering will typically be completed by staff members with wider
backgrounds in both domain knowledge and experience in asset base architectural design.
The development of components can take place with less experienced staff as long as they are
trained in the extensions to Ada offered by the EDGE/Ada toolset.

* Support materials from prior domain engineering phases identified. It is not necessary to wait
until the Implement Asset Base phase to begin the work on supporting materials for the assets.

The basis for some of these support materials may already have been produced during Define
Asset Base Architecture. All such materials that can be used as source material for the assets
to be developed during this phase should be gathered prior to the start of Plan Asset Base
Implementation.

Inputs

* ASSET BASE DOSSIER. Contains usability and feasibility data, as well as traceability to possi-
ble prototype artifacts for reengineering.

* ASSET BASE ARCHITECTURE. Overall architecture of the asset base. In DAGAR terms, this
consists of the formal ARCHITECTURE SPECIFICATION using a language for this purpose sup-
ported by EDGE/Ada and a set of REALM SPECIFICATIONS that describe the services and enti-
ties that define each major module that is part of the architecture.

61

6.1 Plan Asset Base Implementation STARS-PA19-S007/001/00

Controls

s CUSTOMER APPLICATION SCHEDULES. Used to determine the staging strategy for the asset
base

s PROJECT RESOURCES. Needed to develop reasonable objectives and schedules for implement-
ing assets.

e TECHNOLOGY CONSTRAINTS. Any global constraints (mandates, limitations) on technology
that will affect how the assets and asset base architecture will be used and therefore can

impact their development.

e ASSET BASE MODEL. Used to bound the features and customers and interface constraints
considered.

Activities

None of the activities listed in this subsection require that they be performed in a particular order.

- To the extent that the development of the plans depends on knowledge of customers and customer
needs, the first three activities can be profitably arranged to precede the others. The DAGAR asset
base implementation planning activity is considerably simplified from the form it takes in ODM
because of the pre-selection of a generative approach to asset base engineering. As such, there is
no need to plan for the selection of implementation technology.

» Consider customer constraints on component usage and assembly into subsystems

While the implementation technology for the asset base itself has been chosen in advance, the
inclusion of products obtained from the asset base into a customer’s own application context must
be considered during asset base planning. The layered architecture as conceived during Architect
Asset Base reflects a broad base of customers and potential customers. This architecture must now
be considered from the perspective of specific customers and detailed customer needs. It may be
the case that specific layers or stacks of layers have become increasingly important to a customer
and therefore separate configurability of assets from these layers is now required. Specific integra-
tion concerns of customers who intend to use the assets in one or more applications should also be
~ listed and addressed. Knowing these concerns can help in planning the phased component devel-
opment process that will be followed in Implement Asset Base.

» Update ASSET BASE ARCHITECTURE and REALM SPECIFICATIONS

As a result of the previous activity, changes may have been identified to both of these workprod-
ucts. These changes should now be reflected in updated versions of the work products. It may be
useful to save both versions of the workproducts as legacy materials from the domain engineering
process as a whole to record the observed distance from the architecture as initially proposed and
then the architecture as implemented.

» Consider customer context constraints on schedule

Consider the current life cycle phase for application projects that are potential utilizers of the
assets to be developed. The overall plan should reflect opportunities and conflicts stemming from
the schedule of each utilizer project. Adjust the schedule or phasing of implementation if neces-
sary to coincide with these phases. This can make a difference between assets being used or being
passed by, whatever their technical merits.

62

STARS-PA19-S007/001/00 6.1 Plan Asset Base Implementation

Record the results in the ASSET IMPLEMENTATION PLAN. Place the anticipated domain engineer-
ing project schedule with milestones for completed assets on a common time line with the antici-
pated schedules of potential customer applications. A separate phasing strategy may be required
for each existing or anticipated system into which domain assets are to be incorporated.

Example. One project might be in an early requirements definition and negotiation phase,
where initial versions of domain assets could be used in a prototyping capacity. Another
project may be almost through with detailed design, and therefore only be able to make use of
thoroughly tested components that offer a close match to the functional profiles assumed by
the current application architecture. Each life cycle entry point presents different challenges.

» Plan development stages

Based on the schedule and feasibility estimates for the components within each of the realms,
develop the detailed staging strategy for implementing the components. Consider factors such as
requirements/opportunities for migrating components and subsystems of components into exist-
ing systems; use of existing systems as testbeds/validation suites, and advantages of early release
of certain configured components to facilitate adoption by particular customers. On a per-compo-
nent basis, the staging strategies can include any of the following options:

* Prototype components. Prototype components are those meant to validate the both the
DOMAIN MODEL on which the architecture is based as well as the architecture and candidate
inter-realm dependencies within the architecture. These early components may not be carried
forward into the final ASSET BASE. For a realm with a large number of components, a cross-
section of the these components may be scheduled for simultaneous development to test the
usability of the variability supported by the components within the realm.

* Component assemblies to validate utilization. A vertical slice through the architecture in the
form of components adequate for incorporation into a complete subsystem is highly desirable
before attempting full-scale implementation of all (or most) components in the asset base.
The key is that enough of the components need to be implemented that application develop-
ers can experience the direct impact of having sufficiently many components for use within
the application.

* Components to validate infrastructure. A set of components may be selected for development
that, taken together, will allow for validation of key aspects of component-to-component
dependencies that will be encoded and applied by the EDGE/Ada toolset to support applica-
tion development. As additional components are developed that allow for more application-
developer choices as presented through the toolset, effective use of the toolset, and the ade-
quacy of rules governing component selection, can be verified.

» Plan asset base documentation, testing and validation

Depending to some extent on the staged development plan, plan the strategy for documenting,
testing and validating both individual components and the asset base as a whole. Document this in
the DOCUMENTATION AND TEST PLAN. The following paragraphs highlight some points to con-
sider.

» Testing components is different that testing source code modules. As mentioned above, the
syntax of the language supported by EDGE/Ada to specify components is largely that of Ada.
However, since components are written with explicit use of other realms in the DAGAR
domain architecture, and in turn are meant to be used by components in other realms, their
testing and documentation should primarily address their role and function in combination
with other components that serve as clients of, and resources for, the current component.

63

6.1 Plan Asset Base Implementation STARS-PA19-S007/001/00

Taken to one extreme, stand-alone testing of components can be viewed as having minimal
value. Some components are written to depend on no other realms in the architecture and
such components should be tested in comparable isolation from the architecture. But even
here, it is better that test harness components be developed and included as part of the archi-
tecture itself so that testing happens within the scope of the architecture. Test plans and data
sets can also be developed in relative independence of the architecture, but they should be
applied and evaluated from an architectural perspective.

* Base component documentation and test materials on architecture materials. Components in
one sense are instances of the realms to which they belong. During architecture definition and
in particular during the Develop Architecture Documentation and Test Materials task, suffi-
cient information 1is available that can be used to formulate test plans, policies, procedures
and even test data. Moreover, documentation templates for each realm can be established that
need to be refined for each component within the realm. These base materials should be the
first source of information to be consulted in connection with this planning activity. Inasmuch
as the ASSET BASE ARCHITECTURE is based on the DOMAIN MODEL, supporting test and doc-
umentation material should also be based on the DOMAIN MODEL. In planning the refinement

~ of test and documentation material for particular components, it is advisable that the architec-
tural relationships be consulted so that testing materials can be planned that make use of
these relationships. Such test materials will naturally exhibit a high degree of reuse and will
feature test case data designed to show the essential variability captured in the individual

components.

* Some supporting materials should be developed as assets themselves. The application engi-
neer will finally need to test the extracted components and/or subsystems in the target context
(e.g. hardware, system software, other application software) in which the components or sub-
system will be used. Documentation to support this use will also be required. The asset base
should be structured so that this material is available using the same (or an integrated) mech-
anism used to extract the components themselves. When viewed from this perspective, these
materials should be considered as assets themselves. Planning should take into consideration.
how to prepare such materials for inclusion in the asset base.

» Plan asset base infrastructure development

The asset base infrastructure will, for the most part, be restricted to the component composition
rules that are used when an application engineer is using the EDGE/Ada toolset to identify assets
for use within the application. Determining when these rules will need to be developed, and in
what customer contexts they are expected to play a role, is the primary function of this activity.
The rules themselves will be determined as the construction of the components proceeds and fine-
grained component-to-component interactions and dependencies are identified during component
implementation. Clearly, the rules along with any changes to the EDGE/Ada toolset to support the
current domain engineering project and sets of application engineering projects will need to be
completed by the time these projects require the functionality provided by the respective changes
and additions.

» Plan asset evolution

In general, the production of assets and modifications to the Asset Base Architecture will not end
once the domain engineering effort that first establishes the architecture has finished its work.
Plans should be established that indicate how and when results produced from application engi-
neering activities can be fed back into the asset base. Most domain engineering projects will
establish a set of maintenance and asset base management procedures and will secure resources
that will enact these procedures. This activity establishes how feedback from asset base applica-
tion will flow into these procedures.

STARS-PA19-5007/001/00 6.1 Plan Asset Base Implementation

When to Stop

All three planning documents completed. Three particular planning documents have been
identified as outputs for this task. Sufficiently clear and informative versions of these docu-
ments are required before the Plan Asset Base Implementation task can be stopped.

A schedule for implementing assets developed. All good plans require a schedule by which
the activities that comprise the effort being planned can be clocked and monitored. In regard

to the Implement Asset Base phase, the schedule must be sufficiently detailed and precise that
all identified customer application projects are assured of having their needs met. The sched-
ule must also consider project resource constraints as well as the estimated feasibility of the
components themselves.

Guidelines

Consider component interconnection trade-offs. The simplest components are the ones that
are self-contained; they have no dependencies on other realms in the architecture. It may
seem that the best place to start component implementation is with these components. How-
ever, because the DAGAR process crucially depends on components working together in an
architectural context, it may be best to schedule component implementation so that certain of
these connections are used and tested early. It would be best not to pick components with
many connections to other realms in the architecture. But, as long as customer need for com-
ponents can be accommodated, completing components in three or more layers of the archi-
tecture that contain references to one another will be valuable in evaluating the architecture
and the ability of the domain engineering team to work correctly using DAGAR principles
and tools.

Consider component evolution strategies. In many cases, realms will contain components
that are related to one another in terms of features or performance. Components will differ in
that they will be faster or rely on different resources (e.g. identified by the realm parameters
named for the component) in completing the services identified in the Realm Specification.
Some components may be defined to depend on the realm that they are in (these are the so-
called symmetric components). In these cases, it is advisable to work on the simpler forms of

‘the components first and later move on to the more complex ones. The more complex cases

may turn out to use the same (or nearly the same) code as the simpler component for some of
the defined services. It may even make sense to provide component body stubs for some of
the realm’s services and get a single subsystem involving the component working with mini-
mal functionality. This minimal form of the component can then be used in component inte-
gration testing that will validate the asset base infrastructure.

* Consider adding scaffolding realms to architecture. It may be necessary to propose additional

realms for inclusion within the architecture to serve as intermediate testing platforms for
components (or several component layers) that otherwise cannot be tested until a complete
subsystem integration is performed. As an architecture may contain many layers, postponing
testing in this way will impact quality assurance on the lower levels of the architecture. Even
though there may not be any application engineering customers for these scaffolding realms,
it is advisable to permanently add them to the architecture so that as other components are
added, they can be tested using the same test components within these realms.

* Consider test plans and other supporting materials as assets. The addition of test and docu-

ment work products to the asset base itself was proposed earlier in this section. While it may
not make sense for these materials to be treated as stand-alone assets, apart from the compo-
nent(s) that require or suggested them, they should at least be viewed as bound additions to

the components to be provided to asset base customers who select the components for use in

65

6.1 Plan Asset Base Implementation STARS-PA19-S007/001/00

their application. While the testing materials may originate in templates and drafts first devel-
oped as part of the architecture, component implementation details will cause significant
extensions to these base materials. These modifications will be reflected in the supporting
materials that are to be treated as collateral assets for inclusion in the asset base. Analogously
to components being architecturally related to one another, test and documentation materials
can have similar relationships to one another. These relationships should be reflected in the
asset base infrastructure used to select and extract assets from the asset base.

66

STARS-PA19-5007/001/00 6.2 Implement Assets

6.2 Implement Assets

After developing the asset base architecture using the facilities of EDGE/Ada, and then producing
a plan for how to complete development of the asset base, the domain engineer is ready to begin
the task that in some sense is the primary goal of the entire domain engineering activity; namely,
the production of the assets themselves. EDGE/Ada provides both a specification language and
tool support to be used in component development. The specification language is an extension of
Ada so that engineers who are familiar with Ada can be quickly trained to develop components.
REALM SPECIFICATIONS developed during the Define Asset Base Architecture phase provide the
starting point for component development. Support is also provided within EDGE/Ada for devel-
oping asset utilization infrastructure that help application developers understand and apply the
assets contained in the asset base.

/ Implement asset base \

Plan asset p _Implement
base assets infrastructure
implementation

component

9 specifications ie Is: J

Exhibit 29. Implement Assets Process Tree

The primary purpose of the Implement Assets sub-phase of DAGAR is to produce a set of compo-
nent specifications and component bodies that conform to and implement the ASSET BASE ARCHI-
TECTURE. These components are designed to provide the desired variability within the
architecture for required and anticipated features and capabilities in the context of a set of asset
base customers. These features and the necessary understanding of asset base customer wants and
needs comes through domain analysis and modeling.

Although the specification language syntax is very close to Ada, the task of producing component
specifications and bodies is not exactly like that of producing Ada package specifications and
bodies. In fact, the more experienced engineers are in producing Ada package code, the more dif-
ficulty they may find in perceiving the larger picture that underlies the DAGAR approach. Pro-
ducing quality components requires that this picture be understood and applied during the
development process. So, while Ada experience is desirable, the component development process
will need to be monitored to guard against an overly Ada and system-specific mindset while the
Implement Assets phase is underway.

Approach

Component definitions produced during this sub-phase are implementations of the architecture
modules (realms) produced during Define Asset Base Architecture. Components are thus
instances of the realms that were developed as part of the ASSET BASE ARCHITECTURE and consist
of a specification part and a body part.

67

6.2 Implement Assets STARS-PA19-S007/001/00

ﬁ}fsitment ation Documentation and test plan
ple ¢
plan
~
Asset base Develop Component
architecture | ’ component specifications
specifications
™ 2.2.1
Develop |Component
Exemplar \) component bodies
system bodies N
artifacts - 222
N
~
Develop asset
- documentation L
and test » Assets
materials
223
Asset
~ documentation
and test
EDGE materials

Exhibit 30. Implement Assets IDEF, Diagram

A Component Specification consists of fragments of extended Ada code that provide implemen-
tation details that supplement the realm interface defined in the REALM SPECIFICATION. Because -
the definition of a component can make use of the services provided by any of the realm parame-
ters declared for the component, these fragments can be used to introduce dependencies at the
component specification level that are satisfied in terms of these realms.

A Component Body consists of relatively complete sections of extended Ada code that define
how a component implements the services and other interface elements of the realm to which it
belongs. EDGE/Ada syntax provides for the symbolic reference to the services and interface ele-
ments for any of the component’s realm parameters. These references are called holes. At code
generation time (as required by the application engineer or the domain engineer for testing pur-
poses), these holes are filled by references to components that instantiate the realm parameters.
These instantiations provide the means to generate complete Ada code that binds together defini-
tions at both the realm and component levels.

Exhibit 30 provides an overview of the Implement Assets sub-phase. The tasks within the process
diagram will be covered in subsequent subsections. It is important to note that toolset support is
provided for processing the component specifications and bodies and producing compilable Ada
from them. At the current time, no direct support is provided in the toolset for producing the sup-
porting materials such as component documentation and test materials.

It is assumed that the domain engineering team is sufficiently knowledgeable about Ada to be able
to complete the DAGAR component bodies. As noted previously in this guidebook, DAGAR is
implemented in Ada and is targeted to the production of Ada products. To be successful, the
domain engineering team must either have sufficient Ada knowledge or be trained in Ada prior to
the start of the DAGAR development process. This Ada knowledge must be tempered with

68

STARS-PA19-5007/001/00 6.2 Implement Assets

awareness of the differences inherent in DAGAR component development compared to standard
package design and implementation in Ada.

Results

Whereas, the principal product of the Define Asset base Architecture phase was a specification of
what functionality is to be provided by the asset base, the Implement Assets sub-phase produces
the implementation describing how this functionality is accomplished. Along with the implemen-
tations themselves, supporting materials necessary to verify the components and to describe how
they work internally and with respect to one another are also produced. These results provide the
core, end-user product to be produced by a domain engineering effort.

Process

As shown in Exhibit 30, the Implement Assets sub-phase consists of three main subtasks:

* In Develop Component Specifications, domain engineers elaborate the REALM SPECIFICA-
TIONS that establish the core services and capabilities of the asset base with COMPONENT
SPECIFICATIONS that provide details to specialize the realm definition and reflect the various
alternative implementation and connectivity choices available in the architecture.

* The primary goals of the second task, Develop Component Bodies, is to define with sufficient
detail how the services published by each realm are actually carried out. The language used
for Component Bodies is basically Ada with extensions to support the use and instantiation
of holes where services and definitions from realms that parameterize the component can be
included in the component body.

* In the third task, Develop Asset Documentation and Test Materials, domain engineers pro-
duce the supporting material that is necessary to understand and evaluate the component
being produced. In addition to supporting a single component, material that describes how
components work together to achieve certain goals, and how to test that these goals are
achieved, is also necessary.

The EDGE/Ada toolset is targeted to provide effective engineering support in executing all three
of these tasks, although there is stronger support in the current toolset for the first two of the sub-
tasks

Sequencing

There is no absolute requirement that the task elements of Implement Assets be performed in a
particular order. While a pattern of developing each component specification and body jointly can
work, under some circumstances it may be preferable to work on the specification level for a large
number of components before proceeding to any significant body development.

* Supporting material with component definitions. In order that knowledge gained during
development not be lost, it is advisable that there not be a long delay between the time com-

ponent specifications and bodies are produced, and the time supporting materials are devel-
oped. Even if different personnel (e.g. documentation or quality assurance specialists) are
assigned to the task of producing supporting materials, the time at which these materials is
produced should coincide, as far as possible, with the time at which the specifications and
bodies are completed. Not doing so can lead to valuable information gained during develop-
ment being lost when it comes time to verify and document what was developed.

69

6.2.1 Develop Component Specifications STARS-PA19-S007/001/00

» Component development sequence according to plan. The planning phase for Implement

Asset Base can be expected to drive the sequence of component development to a large
degree. For those components for which an early working version is required, it will be nec-
essary to follow a component specification with a rapidly produced body for that component.
The ASSET IMPLEMENTATION PLAN should be considered the primary input in deciding com-
ponent development steps and sequencing.

6.2.1 Develop Coinponent Specifications

Although it is not necessary for either of the phases Develop Asset Base Architecture or Plan
Asset Base Implementation to be complete, there must be a sufficient architectural basis and a plan
of attack for how to sequence component development before the Develop Component Specifica-
tions task can begin. But, due to the nature of DAGAR, the work to be done to complete a COM-
PONENT SPECIFICATION is relatively simple and quick. The EDGE/Ada capabilities make it easy
to verify if a component specification is consistent with its realm.

By binding each of the realm parameters for a component with a valid component specification
within the realm, EDGE/Ada is able to generate compilable Ada code that implements an archi-
tectural binding for the component. Doing an Ada compilation will then indicate whether there
are any syntactic errors in either the Realm Specification or the Component Specification. Errors
in either location can then be corrected.

(Implement asset base \

T

Plan asset Implement _Implement
base assets infrastructure

implementation

. Develop Develop asset
omponent documentation
bodies and test materials /

Exhibit 31. Develop Component Specifications Process Tree

The primary purpose of the Develop Component Specifications task is to produce a sufficient
number of COMPONENT SPECIFICATIONS, written as extended Ada fragments, to allow further
work on Asset Base development to proceed. A spiral development pattern is possible where a
small number of component specifications are completed, followed by the necessary component
bodies, and followed by an integration of related components to verify both compositional cor-
rectness as well as functional correctness for the subsystem.

A significant challenge to be addressed in this task is that COMPONENT SPECIFICATIONS, by them-
selves, are relatively useless as they are meant to add detail to existing REALM SPECIFICATIONS.
As such, they cannot be tested or evaluated apart from the realm specification that they extend.
This concern mirrors one discussed in the Develop Realm Descriptions task that indicated that
realms cannot be tested in stand-alone fashion as they require components to provide fillers for
the holes left in the realm specification. Engineers responsible for testing at each of the realm and
component specification steps of the DAGAR process will need to coordinate their work closely.
One possibility would be that an early iteration of the Develop Component Specifications task be
completed as each realm is completed.

70

STARS-PA19-5007/001/00 6.2.1 Develop Component Specifications

Approach

The essential distinction between Component Specification and Body was made previously in the
opening paragraphs defining Implement Assets. Looking at each realm (following an order
obtained from the Asset Development Plan), and then looking at selected components for these
realms, the domain engineer must write extended Ada code fragments that fill in the missing
details within the Realm Specification. These fragments are placed in separate specification files
and checked into the EDGE/Ada database. EDGE/Ada verifies the correctness of the file by
checking whether all holes that need to be filled in the realm have data supplied by the Compo-
nent Specification. If a component itself has any realm parameters that need to be matched with
components, the EDGE/Ada user must make sure that a parameter/argument binding for each of
these parameters has been made. If any of these parameters are used within the component speci-
fication, EDGE/Ada will not be able to generate Ada unless a binding has been specified. Depend-
ing on the ASSET IMPLEMENTATION PLAN, a domain engineer can elect to complete most, if not
all, of the COMPONENT SPECIFICATIONS before proceeding into the implementation of the COMPO-
NENT BODIES; or, the specifications and bodies can be implemented together in an Asset Base
evolution spiral.

Workproducts

B COMPONENT SPECIFICATIONS

As discussed above, a COMPONENT SPECIFICATION declares implementation-specific choices that
a component makes regarding how a REALM SPECIFICATION is to be translated into code that is
integrable into a subsystem as desired by an Asset Base customer. Exhibit 32 shows an example
of the kind of full declarations and declaration fragments that can be placed in a COMPONENT
SPECIFICATION. This example is compatible with the REALM SPECIFICATION example shown in
Exhibit 24. Each component has a name (indicated by the §component keyword) and each full
or fragment declaration also has a name (introduced by the $£for keyword) that corresponds to a-
named hole inside of the component’s REALM SPECIFICATION. A component can leave a hole
empty if desired as shown for the hole Symmetric_Function_Declaration. Realm parame-

lvith {Vectorsy};
lwith {{Computation_Support}}; use {{Computation_Support}};

Kcomponent Std_3_Matrices is

Sfor Vector_ Declaration use
{Vectors} .Vector

Sfor Matrix Index_Declaration use
type Matrix _Index is new Integer range 1..3;
Kfor Matrix Declaration use

type Matrix is array
(Matrix_Index, Matrix_Index) of Real:;

Sfor Symmetric_Matrix_Declaration use
{{Computation_Support}}.Symmetric_3_x_ 3_Matrix

Sfor Symmetric_Function_Declaration use

send Std_3_Matrices;

Exhibit 32. Complete Matrix Component Specification

71

6.2.1 Develop Component Specifications STARS-PA19-S007/001/00

ters are indicated by a single pair of braces (e.g. {Vectors}) while supporting parameters avail-
able at the entire architecture level are indicated by pairs of double braces (e.g.
{ {Computation_Suppoxrt}}). Substitution for any of these parameters is handled by EDGE/

© Ada.

When to Start

* REALM SPECIFICATION complete. The most basic entrance requirement for this task is that a
REALM SPECIFICATION exist for each component that is under construction. It is not neces-
sary that the entire ASSET BASE ARCHITECTURE be complete. Because components can in
turn depend on other realms (which in turn contain other components), it is advisable that an
architectural cross-section consisting of the ARCHITECTURE SPECIFICATION and a companion
number of REALM SPECIFICATIONS should be in place before any significant COMPONENT
SPECIFICATION development begins.

* ASSET IMPLEMENTATION PLAN sufficiently complete. Component implementation should
always take place with guidance as contained in the ASSET IMPLEMENTATION PLAN. The plan
can itself be undergoing revisions, but enough information needs to be recorded so that cur-
rent component development will take place in a manner that best supports overall Asset
Base goals.

Inputs

e ASSET BASE ARCHITECTURE. The architecture consists of an ARCHITECTURE SPECIFICATION
that defines the realm and component members that make up the architecture framework and
for each realm, a set of REALM SPECIFICATIONS that define the entities and services exported

by each realm. .

* EXEMPLAR SYSTEM ARTIFACTS. Candidate artifacts that suggest component specification ele-.
ments and which can possibly be adapted for use as parts of COMPONENT SPECIFICATIONS.

* ASSET DOCUMENTATION AND TEST MATERIALS. These materials are those developed during
the Define Asset Base Architecture phase that provide template sources for the more complete
documentation and test materials to be developed during Implement Assets.

Controls

e ASSET IMPLEMENTATION PLAN. As explained above, essential guidance for this task is pro-
vided by the ASSET IMPLEMENTATION PLAN including the order in which COMPONENT SPEC-
IFICATIONS are developed and their synchronization with COMPONENT BODY development.

Activities

» Write each component specification.

The Develop Component Specifications task is the first one of those making up the Implement
Assets phase that addresses implementation details of the asset base — how things get done. The
first kind of how concerns alternative ways of providing details at the interface level of the archi-
tecture. Interfaces as given in a REALM SPECIFICATION are complete in substance but allow for
variability in terms of details. The developer of a COMPONENT SPECIFICATION can see the alterna-
tives available by looking at the holes left in the REALM SPECIFICATION. In a straight-forward

72

STARS-PA19-5007/001/00 6.2.1 Develop Component Specifications

sense, the component developer’s job is to design appropriate “filler” material by which the holes
are completely filled in.

Example. Exhibit 32 shows an example of a complete component specification for a matrix
realm component. As shown in the figures, the syntax for components is based on the Ada
language. In the example, Ada type declaration text is provided for the basic types that are
part of the matrix realm specification. The component specification makes use of its single
realm parameter {Vectors} in completing these type declarations. The names in double
braces are architecture-wide configurability options that contain basic definitions that are
independent of particular realms and components.

» Test each component specification.

Testing of component specifications and bodies independently of their integration into client
applications is also required. One important mechanism that can be used to test the asset base is
the creation of a top-level test component within the realm serving as the primary interface for
applications requiring asset base services. The COMPONENT SPECIFICATION for this component
should be developed early during asset base evolution and kept up-to-date as the implementation
of the asset base proceeds. The EDGE/Ada toolset is used to process all components and, when
combined with the appropriate realms, turn them into compilable Ada packages and subprograms.

EDGE/Ada is configurable in terms of how it supports the production of Ada from realms and
components. At any time, the domain engineer can elect to produce complete Ada from the evolv-
ing architecture. This Ada code can be compiled automatically or, if some details necessary for
successful compilation remain to be specified, the engineer can defer the compilation. As soon as
all realm specification holes have been completely defined in one or more COMPONENT SPECIFI-
CATIONS, use EDGE/Ada is to produce compilable Ada library units that are then compiled and
checked for errors. See Figure 44 on page 106 for an example of the Ada code specification pro-
duced for std_3_Matrices component specification.

When to Stop

* Asset Base Specification thread complete. Depending on the domain engineering team’s
implementation strategy, it may be best to stop the Develop Component Specifications task as
soon as a sufficient collection of COMPONENT SPECIFICATIONS has been completed to permit
the team to move on to the Develop Component Bodies task. If an evolutionary spiral imple-
mentation strategy is being followed, this does not mean that the Develop Component Speci-
fications is over. This task will continue when the next round of component development is
ready to begin. For a small asset base, or one in which the component collection is well
understood and stable, it may be possible to complete all of the required Component Specifi-
cations before beginning work on any of the COMPONENT BODIES.

* ASSET IMPLEMENTATION PLAN goals reached. The plan by which asset base development is
proceeding should be the main control on when a development task is finished (at least tem-
porarily) and another task can begin. The attainment of goals defined in the plan indicates
when and if moving on to a new task or phase is permissible.

Guidelines

* Consider evolutionary component development. In the discussion of this task, there have
been numerous mentions of allowing for evolutionary development of the asset base. In fact,
software development experiences suggest that such an evolutionary path may be preferred.
By not spending too much time at high level considerations (e.g., the interface specification

73

6.2.2 Develop Component Bodies STARS-PA19-S007/001/00

level only) and driving down to the component body implementation level for key compo-
nents and then integrating a complete suite of realms, component specifications and compo-
nent bodies into a complete (if not fully functional) subsystem, the asset base architecture
will receive a well-timed evaluation. Problems that exist at higher levels in the asset base can
be caught early while remedial action is still possible without severe budget or schedule
impact. The domain engineering team should be encouraged in the use of this approach by
orienting the ASSET IMPLEMENTATION PLAN toward its support.

» Use existing artifacts for guidance. Most asset base development efforts will, at least in part,
be targeted to the support of existing systems with the possible “back-filling” of assets into
existing system contexts. As such, features and functionality expected in these contexts must
be supported in the asset base. By directly considering available artifacts (especially if they
are implemented in Ada) during both component specification and body development, it is
more likely that easy integration of assets into these contexts will take place. Due to the lan-
guages supported by EDGE/Ada, these artifacts cannot be used as-is, but can still serve as
useful inspiration and developmental models for the assets that will be constructed during

domain engineering.

* Stick to REALM SPECIFICATIONS. During COMPONENT SPECIFICATION development, the focus
should be on providing just those code fragments that are needed to tailor the defined realm
specifications and permit complete and correct Ada code to be generated from the combina-
tion of associated realm and component specifications. At this stage, there is no need or room
for innovation and fault-finding with the capabilities being provided at the REALM SPECIFI-
CATION level. During integration testing when realms and components are combined to yield
evaluatable subsystems, inadequacies may arise that need to be addressed. But the Develop
Component Specifications task is not intended to provide this opportunity.

* Use EDGFE/Ada toolset to its fullest extent. The EDGE/Ada toolset provides a powerful set of
processing elements that the domain engineer should use as a routine part of the asset devel-
opment process. Assets from the DAGAR viewpoint are uniquely supported by the toolset
and all aspects of their development should be controlled by executing the appropriate mem-
ber of the toolset and updating the internal asset development database being maintained by
the toolset. The toolset enforces consistency among the various asset base elements and iden-
tifies errors. Domain engineers should get in the habit of frequently applying the toolset as
they work on the various specification files that make up the asset base. Errors will be caught
sooner rather than later and problems with higher levels of the asset base architecture can be
corrected while there are fewer repercussions to completed, but as yet unprocessed, lower

levels.

6.2.2 Develop Component Bodies

The majority of the work in the Implement Assets phase is likely to be found here in Develop
Component Bodies. After a sufficient number of COMPONENT SPECIFICATIONS have been com-
pleted to flesh out the REALM SPECIFICATIONS for the realms to which the components belong, the
detailed implementation steps to carry out the operations defined for each realm must be written.
Component Bodies contain these detailed instructions. They are written in an Extended Ada lan-
guage supported by the EDGE/Ada toolset. However, unlike the code fragments that make up
Component Specifications, Component Bodies are relatively complete descriptions of algorithmic
processing that are comparable to Ada package bodies that, due to the nature of EDGE/Ada, they
closely resemble. It is up to the ASSET IMPLEMENTATION PLAN to specify whether the work of
defining these bodies follows a relatively complete Develop Component Specifications task or is
integrated with a planned sequence of component development where COMPONENT SPECIFICA-
TIONS and BODIES are completed together.

74

STARS-PA19-5007/001/00 6.2.2 Develop Component Bodies

A component body is not meant to stand-alone in the asset base. Its meaning is found in combina-
tion with a REALM SPECIFICATION and a corresponding COMPONENT SPECIFICATION. For those
components that are declared to have realm parameters, any interface element from each of these
realms can be used to accomplish what is required of the component. While a COMPONENT SPEC-
IFICATION need not make use of any of its realm parameters, there must be some place in the COM-
PONENT BODY that at least one of the realm’s exported entities is required to complete the job
allocated to the component — otherwise, there would have been no reason to include the realm as
a parameter.

/ Implement asset base \

T

Plan asset Implement _Implement
~ base assets infrastructure
implementation

Develop asset
documentation
and test materials j

Develop
component

\ specifications

Exhibit 33. Develop Component Bodies Process Tree

omponent
bodies

The primary purpose of the Develop Component Bodies task is to complete a COMPONENT BODY
for every one of the components identified as being part of the ASSET BASE ARCHITECTURE. In
some sense, these body elements provide the core capabilities of the Asset Base itself. For an
asset base that is intended to be used to produce code that is then integrated into a larger applica-
tion, without these bodies, there would be nothing to integrate. This task is the one that is most
like typical Ada code development in that the areas of concern are familiar to people trained as
Ada programmers.

This familiarity is also a potential trouble spot. If domain engineers adopt too much of an Ada
mindset, they may be unable to view their job with a sufficiently broad point of view so that com-
ponents can be written to be independent of other implementations; i.e., other components, or at
least assumed implications based on these implementations. The extended Ada dialect supported
by EDGE/Ada permits the engineer to access realm-supplied services from other realms. But the
implementations of these realms can be highly variable and during testing, when realm parame-
ters are instantiated by actual components, it may be possible to infer that behavior that is caused
by the use of a particular component may be in effect for all components. The only way to be sure
about such behavior is to carefully test for all components that may be used as substitutions for
the realm parameter. This can significantly complicate testing when several components, each of
which has several realm parameters, are integrated together as subsystems that conform to the
architecture.

Approach

Once the extended Ada dialect is familiar to the component developers, the Realm Specification
and the Component Specification for the component under construction are examined to learn
what is required of the component implementation. For a component that in turn depends on other
realms, it will be necessary to consider the impact of these dependencies and arrange for the
development of at least one component in each of these realms so that code generation for the cur-
rent component will be possible. This code generation need not take place immediately but is nec-

75

6.2.2 Develop Component Bodies STARS-PA19-S007/001/00

function "*" (Left : in Matrix;
Right : in {(Vectors}.Vector) return {Vectors}.Vector ij

Vector_Index : Cartesian_Coordinates :=
Cartesian_Coordinates'First;
Result : {Vectors) .Vector;

begin -- "*"

for Column_Index in Matrix_Index loop
Result (Cartesian_Coordinates'Val (Column_Index - 1)) := 0.0;
for Row_Index in Matrix_ Index loop
Result (Cartesian_Coordinates'Val (Column_Index - 1)) :=

Result (Cartesian_Coordinates'Val (Column_Index - 1)) +
(
Left (Column_Index, Row_Index) *
Right (Cartesian_Coordinates'Val (Row_Index - 1))
)
end loop;
end loop;

Exhibit 34. Partial Matrix Component Body

essary for integration and functional testing. EGDE/Ada will be used to process each
COMPONENT BODY and verify its compatibility with the current architecture. EDGE/Ada will also
be used to complete code generation when specific components are assigned to fill the realm
parameter slots for the component under construction. The combination of a REALM SPECIFICA-
TION, COMPONENT SPECIFICATION, and COMPONENT BODY for the component under construction,
along with realm and component specifications for each of the realm parameters required by the
component, are necessary to enable completion of code generation.

Workproducts
B COMPONENT BODIES

COMPONENT BODIES complete the concretization of how a realm is implemented that was begun
with the production of the corresponding COMPONENT SPECIFICATION. Exhibit 34 contains a por-
tion of a COMPONENT BODY that corresponds to the COMPONENT SPECIFICATION shown in
Exhibit 32. The name of the component is required (here Std_3_Matrices) and must match
that used in the specification. Because the specification already has named the single realm
parameter (Vectors) needed for the component, the body file can use references from this realm
(e.g. the type clause for the identifier Right in the “*~ function with such references marked by
a pair of brace characters ({}). Most of the content of a Component Body will appear as ordinary
Ada and the EDGE/Ada tools depend on this form to lessen the translation overhead to produce

76

STARS-PA19-S007/001/00 6.2.2 Develop Component Bodies

generated Ada from the body. Any component-for-realm parameter substitution is handled by the
toolset which also checks for consistency among the realms and components that are used with
one another.

When to Start

* Necessary COMPONENT SPECIFICATIONS complete. As explained above, besides the COMPO-
NENT SPECIFICATIONS for the COMPONENTS BODIES under development, any realm parame-
“ters for components under development must also have Component Specifications in place to
allow for code generation and testing. The ASSET DEVELOPMENT PLAN should be followed in
deciding how to sequence component developments so that those of highest customer interest
are completed first. For components that build on, or are patterned after, other components,
plans should suggest how these successive developments can be staged to best support over-
all asset base development. '

* Testing and integration plans understood. While a complete plan for the entire asset base
need not be in place before significant effort is applied to COMPONENT BODY development,
plans must be sufficiently complete and understandable to the domain engineering team
responsible for component development. Such plans are particularly important when there
are complex chains of reference among many of the components and realms in the asset base.
Testing and integrating one part of the asset base may in turn require sufficient results avail-
able from another part. Planning can make sure that these dependencies are clear and a road
map is in place to address them.

Inputé

* COMPONENT SPECIFICATIONS. Both the specifications for the current Component Bodies and
for components in realms that parameterize these components are required.

® ASSET BASE ARCHITECTURE. Components are not meant to stand-alone. Their dependencies‘
on other architectural elements are formally established in the ASSET BASE ARCHITECTURE.

* EXEMPLAR SYSTEM ARTIFACTS. Because DAGAR COMPONENT BODIES are written in
extended Ada that on a statement-by-statement level rely heavily on Ada syntactic expres-
sions, segments of COMPONENT BODIES can often be created by following and adapting exist-
ing high-level language code, especially if the code is available in Ada. If design and
requirements materials exist for exemplar materials, these materials can also be applied
directly to component design

* ASSET DOCUMENTATION AND TEST MATERIALS. Test materials and documentation abstracts
and templates will have been produced during initial architecture development, primarily
during the development of the REALM SPECIFICATIONS for the components now under con-
struction. These materials can be used as the basis for the more detailed and individualized
material required during COMPONENT BODY development.

Controls

* ASSET IMPLEMENTATION PLAN. This plan covers the sequence of component development
and the strategy and methods to be followed in working effectively as a team to accomplish
the goals outlined in the plan. One aspect of the plan will address whether a relatively com-
plete COMPONENT SPECIFICATION effort is followed by comparably complete COMPONENT
BoDY effort, or whether a more evolutionary development pattern is to be pursued.

77

6.2.2 Develop Component Bodies STARS-PA19-S007/001/00

Activities

» Write each component body.

The Develop Component Bodies task continues that began at the COMPONENT SPECIFICATION
level. Attention must now expand to include the whole of how things get done and in particular
must address algorithmic details that describe how the results and services allocated to the realm
are accomplished in necessarily fine detail. The techniques used to complete Component Bodies
will borrow heavily from the organization’s usual code development practices. As usual, it is best
not to jump immediately to the body coding level but to carefully consider the logical results and
operations required at the implementation level and then to create implementation code that cor-
rectly interprets and carries out the logical steps and produces the expected results. The DAGAR
process does not prescribe detailed practices to be followed here.

Example. Exhibit 34 shows a partial body for the matrix realm component that is an imple-
mentation of the Std_3_Matrices COMPONENT SPECIFICATION shown in Exhibit 32, which
in turn elaborates the REALM SPECIFICATION shown in Exhibit 24. The exhibit clearly shows
the Ada-like quality of the detailed steps contained in a COMPONENT BODY. With the excep-
tion of the use of the realm parameter {Vectors}, and the component name declaration at
the top, all of the lines in the exhibit are standard Ada 83 statements. Notice that the COMPO-
NENT BODY has complete access to the REALM SPECIFICATION holes that are filled in the
Std_3_Matrices specification; e.g., details about the Matrix Index and Matrix types
declared in the specification are used in the body. ‘

» Test each component body.

Testing of COMPONENT BODIES independently of their integration into client applications is also
required. Testing of COMPONENT BODIES cannot begin until at least a few of the realm services
declared in the REALM SPECIFICATION have been defined within the component body. See
Exhibit 45 on page 107 for an example of the Ada code body produced for std_3_Matrices
COMPONENT BODY. Once code generation at the component level is possible, the domain engi-
neer can apply the available test material to determine both functional and behavioral properties.

While some stand-alone testing is a necessary, DAGAR places a strong emphasis on architectur-
ally based testing. Such testing requires that the architectural elements connected to the compo-
nent (realms it depends on, completed components for such realms, etc.) be available and the
necessary testing apparatus and materials for these related components must also be available.
The architecture will typically contain special realms and components within realms that are
defined solely to support the adequate testing of the architectural elements of interest to asset base

customers.

When to Stop

* Asset Base implementation thread complete. While the entire architecture need not have
reached the status of completed and tested Component Bodies, a sufficient thread of capabili-

ties of the sort required by asset base customers must be completed before this task can be
declared finished. The task will continue with some level of effort applied until the entire
asset base, as required to support the currently identified set of asset base customers, has been
completed. Individual component tests are followed by increasingly complete integration
tests that consider operations of the generated subsystem in contexts close to those expected
to exist in applications fielded by the asset base customer.

e ASSET IMPLEMENTATION PLAN goals reached. The purpose of this plan is to guide the domain

78

STARS-PA19-5007/001/00 6.2.3 Develop Asset Documentation and Test

engineering team in its production of the asset base. The plan will include clear and quantifi-
able goals about various states of asset base completion. Attainment of these goals should be
viewed as the best set of stopping criteria.

Guidelines

Essentially, all of the guidelines presented for the Develop Component Specifications task are rel-
evant here. They must be interpreted to extend to the level of algorithmic descriptions, but their
recommendations generally carry over and require no further elaboration. The engineer should
once again be cautious about difficulties encountered during Component Body definition immedi-
ately causing reconsideration of architectural decisions made in previous phases and tasks within
DAGAR. There can be cause to retract and modify earlier decisions but engineers should remain
focused on completing implementation steps and using the proper feedback channels to suggest
possible later changes.

6.2.3 Develop Asset Documentation and Test Materials

During Implement Assets, the domain engineer is designing and implementing the core of the
asset base. Along with Develop Component Specifications and Develop Component Bodies, the
engineer must address the task of developing supporting materials that describe what these asset
elements do and how they can be tested to verify that they perform as described. Rather than wait
until the core development tasks are completed, it is advisable that the developing support materi-
als task should be carried out at the same time as the main development activities.

ASSET DOCUMENTATION AND TEST MATERIALS will extend and particularize the documentation
and supporting test material that was developed during Architect Asset Base. Since Realm Speci-
fications were completed during architecture development, insufficient detail was known about
the components to describe actual test cases or test case results when these tests are to be applied
to individual components. At most, black box test plans can be formulated to identify behavioral
commonalities and variabilities that arise among the known components that were identified as
part of architecture. Similarly, template documentation can be written that summarize activities
and features of the architectural modules, but the insides of these templates cannot be written until
full component development is well underway. When an application engineer determines which
components from the asset base are required to fit an application, and the asset base architecture
guides the engineer in the process of configuring and combining them for use, the appropriate
supporting materials must be delivered to the engineer to complement the configured components
and help guide the engineer to integrate and test them in their actual usage context.

(Implement asset base \

L T

Plan asset Implement _ Implement
) base assets infrastructure
implementation

Develop Develop
component ~ componen
\ specifications bodies

Develop asset
documentation

Exhibit 35. Develop Asset Documentation and Test Materials Process Tree

79

6.2.3 Develop Asset Documentation and Test Materials STARS-PA19-S007/001/00

The primary purpose of the Develop Asset Documentation and Test Materials task is to produce
the material as described in the name of the task. These materials are produced for every compo-
nent and are used during asset development to verify correctness and performance of the compo-
~ nent. The materials are also used by the application engineer during application development.

Even though the production of these supportive materials is called out as a separate task in the
DAGAR process, this task should not be viewed as a stand-alone task. While staff with special
skills (e.g. in software quality assurance) may be called in for this task in particular, they will not
be working in isolation from main development activities. There is a significant management
challenge that must be met during the Implement Assets phase to make sure that all subtasks of
the phase, especially this one, are carried out with plentiful communication and cooperation
among team members assigned to the individual tasks.

Approach

The domain engineer starts with the architecture-based materials and works to refine and extend
them. The documentation includes documentation for the application engineer and user documen-
tation that can be tailored by the application engineer to fit the purposes and audience for the

~ application. A primary source of both documentation and test materials is legacy system artifacts.
Even though the domain architecture may be the source of a substantially new implementation of
application functionality, this new implementation may be used in application circumstances that
have been largely unchanged from those surrounding earlier versions of the application. As such,
useful material for documentation and testing purposes may already exist among the domain
information sources gathered during descriptive domain modeling. Where significantly new func-
tionality is added, or innovative algorithms are designed, the corresponding test and documenta-
tion material will have to be developed by the engineer. The usual development methods for such
material that is in place within the organization can be applied in producing this new material.

Workproducts
B ASSET DOCUMENTATION

Documentation should be produced in formats that are already in place within the development
organization. Supporting material meant for use by application engineers in widely differing
usage contexts should actually be made available in a number of different formats. Many docu-
mentation development systems allow for the export of material in a number of standard formats
that can then be imported to, and accessed from, tools available to the application engineer.

B ASSET TEST MATERIALS

Test materials include test plans, test cases, test harnesses, expected test results and test result
comparers to compare actual results to expected results. Test harnesses will often take the form of
special components that are developed as part of the architecture. Such components can be allo-
cated either to existing realms or be placed within special test realms inserted within the architec-
ture to explicitly support asset base testing. Such test realms are not meant to contain components
expected to be of use to an application engineering customer except to support other segments of
the architecture. The initial identification and positioning of these realms within the architecture
should be done during Architect Asset Base but further elaboration of them will occur during the
Develop Asset Documentation and Test Materials.

80

STARS-PA19-S007/001/00 6.2.3 Develop Asset Documentation and Test

When to Start

* Start of Implement Assets. As noted above, this task is best approached as an on-going task as
component development proceeds. So even while the planning task begins, work on produc-
tion of the necessary supporting materials can get started with gradual expansion of the activ-
ity as more intensive component development gets underway.

Inputs

* EXEMPLAR SYSTEM ARTIFACTS. Exemplar artifacts can often provide valuable raw material
for the creation of asset base supporting materials. Prior documentation sets and test data can
prove particularly valuable.

* ASSET BASE ARCHITECTURE. All testing and documentation should be done from an archi-
tecture-centric point-of-view. In particular, there may be some designated realms and compo-
nents in the architecture that are intended to be used as testing scaffolding.

* ASSET BASE ARCHITECTURE. The ARCHITECTURE DOCUMENTATION AND TEST MATERIALS
were prepared at the architectural level and therefore will need to be adapted and extended to
support component-level testing. A significant amount of integration testing material can be
used as-is from that developed during architecture definition.

Controls

* DOCUMENTATION AND TEST PLAN. The Plan Asset Base Implementation task produced sev-
eral planning documents with this one expressly supporting development of supporting mate-
rials. This is the primary control on this task.

* COMPONENT SPECIFICATIONS. The nature and degree of testing materials that are required
depend strongly on the components themselves. One could argue that COMPONENT SPECIFI-
CATIONS (and COMPONENT BODIES) are best viewed as inputs to this task.

* COMPONENT BODIES. Could also be viewed as input.
Activities

Documentation and testing should be done hand-in-hand with the development of the asset base
itself. The purpose of this task in DAGAR is to highlight its importance in producing high-quality
assets. Unfortunately, the EDGE/Ada toolset does not yet provide any enactment mechanisms or
work product support for the creation of either documentation or test materials. These must be
created and stored using the organization’s available software engineering environment services.

» Extend Architecture Documentation.

In all aspects of DAGAR-based domain engineering, the domain architecture is the key to pro-
ducing usable and understandable results. Documentation activities should begin with a review of
the available documentation from the Define Asset Base Architecture sub-phase. Now that com-
ponents are under development, many of the holes and opportunities defined at the architectural
level are being filled in with real code and real implementation choices. The documentation at the
component level can be viewed as describing how these holes were filled and the opportunities
realized. If component development reveals flaws in the architectural design, a feedback loop in
the DAGAR process will provide the opportunity to correct these flaws and the corresponding
architectural level documentation must be corrected as well. Since documentation will primarily

81

6.2.3 Develop Asset Documentation and Test Materials STARS-PA19-S007/001/00

exist in template form using the locally available documentation mechanisms, engineers will use
documentation processing tools to open the templates, manually insert the component-dependent
elaboration of the template, and the save a copy as the actual document output of the activity.

» Review exemplar artifacts for possible source material.

While DAGAR domain engineering is based on particular specification and implementation lan-
guages supported by the EDGE/Ada toolset, detailed approaches and implementation concepts
will often be suggested by previously implemented systems. If these systems were produced
'using accepted development practices, there will be significant supporting material that was saved
as part of the legacy materials from these efforts. Just as the design and implementation of parts of
these systems can be used to pattern component designs and implementation, the supporting
materials can also be used. If the legacy documentation exists in an electronic form compatible
with that being used to support DAGAR, it can be processed electronically and provide valuable
starter and supplementary material. Similarly, legacy testing materials (especially test plans and
test data) can be used as stepping stones to producing testing material at the component level.

"» Build on architecture testing framework.

Testing is vital to the success of any implementation endeavor. As such testing was considered
early in the architecture development effort and a task in DAGAR is devoted to producing testing
materials as part of the architecture. In particular, a well-designed DAGAR asset base will include
at least one, and perhaps several, realms in which the presence of components solely designed to
support the testing of other parts of the architecture are indicated. Testing activity, and the produc-
tion of testing materials, should be based on the use of these components. Early attention should
be paid to the implementation of such components and they should be used often to execute test-
ing scenarios based on test data developed during this task. Production of new testing materials
should stress effective use of these testing parts and provide data that supports understanding how
components compare to one another when accessed from these test components.

When to Stop

e Component documentation sufficiently complete. Stopping the documentation process will
coincide with the stopping of the component development process. If these activities are syn-
chronized with one another, documentation has been proceeding apace with component
development. If schedules or staffing concerns have led to these activities being de-coupled,
attention must be given to reviewing documentation status periodically to insure that and dis-
connects and inadequacies are addressed.

 Testing materials in place to support application engineer. Asset production processes will

regulate the application of test materials internally to asset development. Testing occurs on a
periodic basis and materials must be in place to support this testing. The domain engineer
must also work to produce testing materials of use at application development and integration
time. This means that some understanding of expected usage contexts is required to prepare
appropriate testing materials. The Develop Asset Documentation and Test Materials task
must continue until the foreseen usage contexts are supported by test materials that can be
used in these contexts. Since later usage profiles may appear, it may be necessary to return to
the task to expand the test materials accordingly.

Guidelines

* Follow incremental pattern. The production of supporting materials should follow the same
pattern as that followed during the production of COMPONENT SPECIFICATIONS and COMPO-

82

STARS-PA19-5007/001/00 6.2.3 Develop Asset Documentation and Test

NENT BODIES. Echoing the advice given in these task descriptions, the domain engineer
should plan the construction of the asset base so that a thread through the asset base is pro-
duced as early as possible and that additional layers and more completely functional compo-
nents are added as component development proceeds. As these initial components are
created, the supporting material for these components should be created along with them

- rather than be postponed until the end of the implementation material. Once basic materials
exist, they can be refined and extended according to the changes made to the components
themselves.

Ensure sufficient staff communication. While a small project may be run with only a small
number of engineers performing all activities in conjunction with asset base implementation,
for larger projects, staff size increases can present additional problems that need to be worked
out. One of these problems is that staff members will often have specialized duties and exper-
tise. Careful hand-offs must be arranged as these duties overlap. The production of documen-
tation and testing materials are often allocated to specialists in these areas and so as
development of component drafts and versions occurs, these products must be handed over to
those with expertise in documentation and testing. Communication among staff members
needs to be facilitated and interim documents such as notes, trouble reports, informal test
data, etc. needs to be made available as raw material for the Develop Asset Documentation
and Test Materials task. EDGE/Ada as currently configured does not offer significant support
in this area, so other development platform services need to be selected and applied in sup-
port of communication.

83

6.3 Implement Infrastructure STARS-PA19-5007/001/00

6.3 Implement Infrastructure

~ The word infrastructure is used in this task to describe the technology supporting DAGAR itself,

including all of EDGE/Ada. Individual domain engineering projects and programs are expected to
identify changes and extensions to this technology and with the availability of the source code for
EDGE/Ada, the opportunity exists for implementing these changes. Such modifications represent
one aspect of infrastructure. Of particular importance to the Implement Asset Base phase are those
elements that support usage of the asset base by customers. None of this infrastructure needs to be

developed from scratch.

The other aspect of infrastructure meaningful to DAGAR are the data structures that must be
developed during domain engineering to support the use of the asset base during application engi-
neering. These data structures are presented through EDGE/Ada to guide application engineers in
selecting and configuring assets from the asset base. Some of the data structures are actually gen-
erated by EDGE/Ada — for example, an RLF representation of the asset base architecture is pro-
duced automatically from the ARCHITECTURE SPECIFICATION. Another important data structure
contains the composition rules that record semantic considerations of which components can be
meaningfully used together with other components. These rules are created on a component by
component basis by the domain engineer as component development continues to the point of
supporting explicit asset base customer usage contexts. The current version of EDGE/Ada does
not fully support the authoring of these rules, although work is planned to improve matters in this
area. EDGE/Ada uses the NASA CLIPS rule-based inferencing system to process these rules and
the domain engineering team should identify a staff member to learn CLIPS operations and the
corresponding rule expression language supported by CLIPS.

/ Implement asset base ' \

Plan asset Implement
base assets
implementation ‘M\A
' Develop Develop Develop asset
component component documentation
K specifications bodies and test materials /

Exhibit 36. Implement Infrastructure Process Tree

The primary purpose of the Implement Infrastructure task is to produce the data structure ele-
ments that underlie EDGE/Ada when it is being used by the asset base customer, and to identify,
and possibly implement, modifications to the infrastructure. It is expected that every domain engi-
neering project that uses DAGAR will need to at least develop a set of component composition
rules that are used during application engineering. Many, if not most projects, will not extend the
EDGE/Ada toolset, but may identify suggested improvements and report problems experienced
while using the toolset. Some projects may go further and add capabilities into the toolset or mod-
ify some of its components to better reflect organization goals and methods. One already identi-
fied opportunity for improvement covers the use of the domain models created during period
leading up to architecture development as a means of cataloguing and providing access to the
components contained in the asset base. The domain model was used directly in defining the
architecture but is currently not made available for during asset utilization by EDGE/Ada.

84

STARS-PA19-5007/001/00 6.3 Implement Infrastructure

In general, it is difficult to look ahead to the time when someone other than the developer will be
using the products of domain engineering during application engineering. It will be hard to antici-
pate the problems and integration concerns that will become evident as elements in the asset base
are applied in a “real” application context. Nonetheless, this kind of anticipation will greatly aid
the utility and eventual success of the asset base and is an important part of the DAGAR
approach. Any lessons learned from the first users of the asset base should be fed back into the
Implement Assets phase and this feedback will particularly be appropriate during the Implement
Infrastructure task.

While there may not be many projects that will decide to make their own extensions to the EDGE/
Ada toolset, those that do need to be aware of the impact that making and integrating these exten-
sions may have on the overall implementation of assets. The STARS Demonstration project prac-
ticed an early form of DAGAR where essentially all of the EDGE/Ada toolset was being
developed and delivered for use on the project concurrently with the production of assets. This
simultaneous development and application of infrastructure caused some friction among develop-
ers and users and had an impact on productivity. Careful management of use and modification of
the infrastructure can alleviate these concerns to some degree but even with the best management
approach, the domain engineering project should expect to seem some impact while infrastructure
changes are being applied. Rather than attempt such infrastructure changes concurrently with
application, changes can be identified and implemented, but not applied in the current develop-
ment context. They can instead by applied in the next project, or at least in a distinct later phase of
the current project where a sufficient transition period is scheduled to mitigate transition concerns.

Approach

Infrastructure to support the use of the asset base by application engineers is developed along with
the assets. In the DAGAR approach, a significant portion of this infrastructure has already been
created in the EDGE/Ada toolset. EDGE/Ada includes provisions for two ways for application
engineers to select assets from the asset base. The first method involves direct selection of compo-
nents using GLUE (Graphical Layout User Environment). GLUE was originally developed by
Loral Federal Systems (now part of Lockheed/Martin) in support of their GenVoca-based design
for an avionics domain within the Domain Specific Software Architecture program[3]. GLUE has
been incorporated into the EDGE/Ada toolset and the domain architect need not develop any spe-
cial support for the use of GLUE since it is automatically driven directly off of the architecture.

The second piece of infrastructure provided for selecting assets is the Architecture Configuration
Assistant (ACA) tool that is included in EDGE/Ada. To support application engineers in their use
of the ACA, the domain engineering team creates CLIPS asset composition rules that determine
which assets can be combined with others in producing products from the asset base. While all
components in the same realm are compatible at the interface level (so-called plug compatibility),
they are not necessarily semantically compatible when used with other components in other parts
of the architecture. By writing rules expressed in the CLIPS rule-based language, the domain
engineer is able to declare configuration constraints that reflect how assets may be used in combi-
nation with each other. The creation of these CLIPS rules is the only part of the asset base infra-
structure that cannot be automatically generated using EDGE/Ada. These CLIPS rules are used in
concert with an RLF representation of the domain architecture (generated automatically by
EDGE) by the ACA to determine choices that the application engineer can make, based on the
choices already made.

Additional opportunities for customer support may also be identified during this task. Rather than
require use of the ACA, other more informal access methods may be provided, at least for expert
users. Using a tool such as the RLF directly to create a model of the asset base, RLF access mech-
anisms can be used to search for assets of interest and provide direct retrieval of their contents.

85

6.3 Implement Infrastructure STARS-PA19-S007/001/00

However, due to the generative nature of DAGAR, the use of the EGDE/Ada toolset will still be
required to produce Ada language modules for integration into the customer’s intended applica-

tion. Providing for semi-automated feedback mechanisms from asset base customer to asset base
~ developer would also prove very useful for long-lived domain engineering efforts.

Workproducts

M ASSET BASE INFRASTRUCTURE

It is more likely that recommendations for improvements or corrections to the existing infrastruc-
ture will be produced during this task rather than extensions or modifications themselves.
DAGAR is supported by EDGE/Ada which features built-in support for application of the
DAGAR method. Specific extensions to EDGE/Ada may be suggested based on other software
engineering environment capabilities that are expected to be in place within an asset base cus-
tomer’s location. For example, any reuse library mechanisms already in use within a customer’s
organization may need to be accommodated and perhaps integrated with the infrastructure pro-
vided by EDGE/Ada. Additional general purpose modifications to the EDGE/Ada environment
“may be identified and in rare cases implemented.

The ASSET BASE INFRASTRUCTURE also includes asset constraints. Asset constraints encompass

the component composition rules that have been discussed previously. These rules are expressed
using an appropriate specification language as required by the EDGE/Ada toolset component used
to process these rules and interact with the asset base customer. The current version of EDGE/Ada
uses CLIPS in an integrated fashion with the RLF for this purpose. As a result, the rules must be
expressed using CLIPS conventions and notation.

When to Start

* ASSET BASE MODEL complete. The ASSET BASE MODEL provides information about the tar-
get customers for the asset base as well as a profile of the Asset Base itself. This information
will is needed to match customers, and the known asset usage contexts for these customers,
to the asset base. Application development methods employed by the customer will also be
used to identify infrastructure enhancements that may better integrate the production of assets

with their use.

* Sufficient component implementations complete. In order to express constraints to be

enforced during component integration and composition, fairly detailed knowledge about
component implementation must be available. Some constraints may be known once the
COMPONENT SPECIFICATIONS have been developed, but before COMPONENT BODIES are com-
pleted. It will be more common that only after bodies have been completed, or at least proto-
typed, can the full extent of component-to-component interoperability be understood. While
the entire set of components need not be complete before this task begins, a representative
cross-section must be available.

It should be noted that postponing this task until the entire contents of the asset base is completed
is not advisable. As is the case for other parts of DAGAR, an evolutionary spiral approach where
increasingly richer variants with more complex interactions follows a relatively sparse and spar-
tan implementation activity is preferred. Even during an early arm of the spiral, asset composition
rules should be considered and early versions of these rules integrated with that part of EDGE/
Ada that processes them.

86

STARS-PA19-5007/001/00 6.3 Implement Infrastructure

Inputs

* ASSET BASE MODEL. As noted above, this model provides vital customer information

* ASSET BASE ARCHITECTURE. Components are composed in terms of the architecture and
therefore composition constraints must reflect and respect the architecture.

* ASSETS. Assets are the realms, and more importantly the components (realm implementation
variants), that make up the asset base. Assets may also include key documentation elements
and test materials that help understand the extent of component composition requirements
and limitations.

* COMPONENT SPECIFICATIONS. These are the asset base elements that detail how interface ele-
ments presented in a REALM SPECIFICATION are made concrete enough so that translation to
an Ada interface specification is possible.

e COMPONENT BODIES. Bodies provide the detailed how-to information necessary to generate
the Ada code that will finally implement the services published through the realm interface.

Controls

* INFRASTRUCTURE IMPLEMENTATION PLAN. The Implement Asset Base phase calls for the pro-
duction of this specific planning document to guide this task. Among other elements, it will
outline scheduling constraints on the presence and completeness of infrastructure elements
supportive of planned asset base evolution and release activities.

Activities

As suggested in the work products identified as coming out of this task, there are two main activi-
ties comprising this task. The overall task requires understanding what needs to be done and then
doing it within the EDGE/Ada toolset.

» Identify Infrastructure changes and extensions

While most projects will not actually implement infrastructure changes, all projects should at
least consider improvements that could make future projects that follow the current one more effi-
cient and of higher quality. While this task is most directly focused on asset implementation and
supporting asset utilization, all aspects of the architecture instantiation and application process
should be considered. There is no specific work product template. A simple text-only or word pro-
cessor document can be used for this purpose. If any of the identified changes or extensions are
required for successful completion of the current project, they should be highlighted and commu-
nicated to project management as soon as possible.

» Implement Infrastructure modifications

When sufficient expertise exists, and project resources and schedule permit, proposed extensions
and modifications to the actual asset base infrastructure can be implemented in this task. Access
to the EDGE/Ada toolset in source code form will be necessary to make substantial changes. The
GUI wrapper for the toolset can be extended to add access to additional tools and capabilities.
Since the RLF includes an API, those parts of the toolset with RLF dependencies can be modified
by working from the APL. The CLIPS component has its own set of extensible interfaces that can
be used to add features or functionality. These changes should be managed using the normal soft-
ware development practices in use within the organization.

87

6.3 Implement Infrastructure STARS-PA19-S007/001/00

» Identify component composition dependencies and conflicts

Before the asset composition rules can be formalized, they must be first conceptualized and made
specific to the components and realms present within the architecture. There are two main kinds
of rules. One expresses the condition that if a certain component is selected for use on one part of
the architecture, it (or a specific component depending on it) must be used in another part of the
architecture. A special case of this condition occurs in configuring an instance of the architecture
that makes use of a realm with only one component. In this case, there is no need to force the user.
to select that one component — it should be selected automatically. Similarly, any “select this
‘component if that component is selected” rule should have the consequence applied automati-

cally.

The other sort of rule concerns forbidding a component (or components) from being used in the
same system instantiation that requires the use of one or more desired components. Here, the pres-
ence of one or more components precludes the presence of others. In the case that the application
engineer is selecting components for a subsystem, picking one of these trigger components should
cause the correspondingly forbidden components from being offered for selection. Both of these

“kinds of rules are expressible using the EDGE/Ada CLIPS-based capability. Before they can be so
expressed, they must be recognized and recorded informally.

» Record composition rules using rule specification language

Once the asset constraints have been determined informally, or at least a sufficient portion of
them, they must be converted to a form processable by the EDGE/Ada toolset. The ACA (Archi-
tecture Configuration Assistant) is currently based on CLIPS and the constraints must be specified
using rule syntax supported within CLIPS.

» Test effectiveness and correctness of rules within Architecture Configuration Assistant

Once the rules have been recorded formally, they need to be tested in the environment within
which they will be used by the application engineer/asset base customer. This testing can take
place by involving real customers and arranging for them to “beta test” the configuration frame-
work and record their findings. If an actual asset base customer is unavailable, members of the
domain engineering team will need to adopt the role of customer and carry out testing activities in
a simulated customer usage environment. The ACA will be used to process the rules and carry out
subsystem instantiation steps that conform to the rules. The end result should be a workable sub-
system that respects all rules that apply during the customer’s interaction with the asset base.

When to Stop

* Asset constraints sufficient to support Asset Base use. Since the goal of this task is the pro-
duction of infrastructure materials to support hands-on access to the asset base, this task must

continue until these materials are sufficient to guide application engineers in retrieving and
configuring assets that can then be integrated with other application code. Unless this mate-
rial is of sufficiently high quality, asset base customers may develop negative opinions about
the usability of the asset base and thereby affect the pay-off that was expected of the asset
base. There can continue to be on-going work in improving the level and completeness of the
usage support offered through the asset constraints, but they need to achieve a level of com-
pleteness that productive access to the asset base can be assured.

 Infrastructure modification requirements recorded for possible implementation. While most

projects will not actually make significant modifications to the infrastructure itself, a project
will likely note operational problems and opportunities for improved support within the infra-

88

STARS-PA19-S007/001/00 6.3 Implement Infrastructure

structure. The Implement Infrastructure task should not end until a written summary of these
observations is produced and forwarded on to those members of the organization with
responsibility to make changes to the infrastructure.

Guidelines

* Involve real application engineering customers. Since the results of this task are meant to
support staff members other than the asset base developers themselves, it is advisable to seek
“an early “friendly” application engineering customer who can be relied on to give honest and
insightful opinions of the usability of the infrastructure and who can tolerate some degree
incompleteness and robustness in the infrastructure. Such a customer may be hard to locate,
but if one can be found, there can be measurable quality and schedule improvements as a
result of the interactions with such a customer.

* Test infrastructure using non-developers. Failing to find an early customer fitting the descrip-
tion given in the previous guideline, the domain engineering team should use internal staff
members who are not intimately familiar with the details of component implementations and
connectivity as a means to conduct a fair and complete test of the infrastructure. It will be
easier for such staff members to adopt a stance that accurately reflects asset base users and
who can express reservations about the interaction they have with the asset base through use
of the infrastructure.

89

6.3 Implement Infrastructure STARS-PA19-S007/001/00

90

STARS-PA19-5007/001/00 7.0 Apply Asset Base

7.0 Apply Asset Base

The Define Asset Base Architecture phase of the DAGAR process produced a formal architecture
specification along with the specification of a set of major modules (called realms) into which the
major areas of functionality to be provided by the asset base have been partitioned. The ASSET
BASE ARCHITECTURE lays out what the key architecture variants are — these are provided by the
components that implement the functionality defined by each realm — and depending on how
these components are combined, various system architecture possibilities can emerge from the
asset base architecture. The realm descriptions define the services and objects that are encapsu-
lated within the realms themselves.

The Implement Asset Base phase of the DAGAR process completed implementations of the
DAGAR components which exist within each realm. In DAGAR, such component implementa-
tions include code fragments for substitution points defined in the realm declarations and com-
plete specifications, using an extended Ada syntax, for how the services encapsulated in the realm
are accomplished. Besides the components themselves, the asset base implementation phase also
produced supporting materials such as test plans, documentation templates, and architecture
usage rules that help an application engineer develop subsystems in terms of the architecture.
These rules are used by the EDGE/Ada toolset in providing system composition guidance to
application engineers.

Generate
subsystem
mplementatio

Exhibhit 37. Apply Asset Base Process Tree

The Apply Asset Base phase of the DAGAR assumes that an asset base of sufficient maturity
exists that engineers building applications that require services available through assets in the
asset base can effectively select which assets are appropriate in a specific application context.
Support for asset examination and selection is provided through the asset base infrastructure,
maintained and presented through the EDGE/Ada toolset. The purpose of this section of the
DAGAR process guidebook is to examine how this support is provided and to define the steps of
an application construction process that is informed and guided by this toolset. Note that this por-
tion of the DAGAR process will often be performed by different team of engineers than those
who designed and built the asset base.

Just as training is required for the domain engineering staff, application engineers must also
receive training to establish proper expectations regarding how to obtain assets and how to use
these assets in combination with the rest of the system being constructed. ODM provides support
for the creation of small, “horizontal” domains that provide part of the functionality required to
field a particular system. As such, assets produced for these domains provide partial coverage for
the set of services that comprise the application system. Therefore, a certain amount of integration
and system-level, in-place testing must take place after the assets are selected. While the ACA
and GLUE components of EDGE/Ada help the engineer to select and integrate the assets with
respect to the architecture, the application engineer must work within the application system
development environment to perform the final steps needed to complete application system devel-
opment, including integrating assets from the domain with the rest of the application.

91

7.0 Apply Asset Base STARS-PA19-S007/001/00

Asset base Architecture Project Technology
model constraints resources constraints
A
)
Define asset | Asset base
Asset base l’ll) ase architecture N Application
L architecture
dossier 1 system
requirements
P
Asset base
Implement % infrastructure
Exemplar asset | o
system base \
artifacts Z
/
’ Asset Asset e
constraints | base p%y
\—pjassetbase Ly Subsystem
3
A T
EDGE
Exhibit 38. Apply Asset Base IDEF, Diagram
Approach

Once the architectural framework and asset base is in place, the task of applying the asset base in
the context of the framework can begin. Asset base application includes planning asset base utili-
zation, composing a subsystem from the available assets (with help provided by the EDGE/Ada
toolset), generating Ada source code that implements the system (again with the help of EDGE/
Ada), applying test cases, and finally tailoring asset base documentation for use in the current
application context. The asset base infrastructure will assist application engineers in selecting
assets and will automatically constrain dependent selections where possible. If there is only
choice to be made in the context of other choices already made, that one choice will be made
automatically. Some of the sub-tasks of Apply Asset Base are not currently supported by EDGE/
Ada (e.g., the planning and documentation tailoring sub-tasks). These must be conducted using
other mechanisms available to the engineer through the organization’s software engineering envi-

ronment.

Exhibit 38 contains a summary of the required tasks making up this phase. The main goal is to
compose a subsystem and then generate the subsystem implementation. The subsystem is then
manually integrated into the rest of the application system. Feedback to domain engineers about
the utility of the asset base architecture and assets should occur throughout asset base application.
Based on this feedback, improvements are possible to assets and their configuration with respect
to other assets. Through the generation facilities of EDGE/Ada, these changes can automatically
lead to new Ada code ready for integration into the application. The application engineering team
can be informed automatically of subsequent corrections and changes that take place in the asset
base. If these changes do not directly impact the current application, they can safely be ignore.
Otherwise, a configured set of assets based on the last set of selections made by the application

92

STARS-PA19-S007/001/00 7.0 Apply Asset Base

engineer can be created automatically. Manual re-integration with the rest of the application will
still be required but if this activity was carefully documented during its first iteration, the amount
of additional work will be minimal. All applications of the asset base architecture and assets
should be used to feed back lessons learned and support improvements to the ASSET BASE ARCHI-
TECTURE and ASSETS.

Results

With a sufficiently robust asset base architecture and assets, the application engineer is able to
concentrate on application-specific needs and is still assured of obtaining tailored code for use
within the application. Some previous work on reuse and reusable components conveyed the
impression that reuse was normally obtained through the use of general purpose components that.
were engineered expressly for the purpose of supporting multiple contexts of use. To do this, the
components often had to be defined with a large number of internal capabilities, many of which
were not applicable in a particular context. This extra bulk introduces needless complexity and
often inefficiency into an application. DAGAR affords the application engineer the opportunity to
make effective choices among available functional and performance characteristics and to have
Ada code generated that provides the needed capabilities without unnecessary features and
unused code.

Successive applications of the domain can be used to recover costs associated with building and
maintaining the domain asset base. In setting up a product line approach to development and
application of software assets, an organization must be concerned with how to pay for the creation
of the domain and its subsequent maintenance. Careful monitoring of how and when the asset
base is consulted and used can lead to a cost sharing and allocation scheme as parts of the organi-
zation begin using of assets contained within the asset base.

Process

As shown in Exhibit 38, the Apply Asset Base phase has been decomposed into five sub-pro-
cesses:

* In the Plan Application of Asset Base task, application engineers consider the surrounding
circumstances that may affect their ability to make use of assets selected from the asset base.
If any significant constraints arising from these circumstances were known to the domain
engineering team at the time the architecture and assets were being developed, it should be
relatively straight-forward to see what application areas (or sub-areas) are covered by the
asset base and make plans to use the asset base to cover these areas.

* The primary goal of the second task, Compose Subsystem, is to make application-sensitive
selections from among the components present in the asset base. Both the Architecture Con-
figuration Assistant (ACA) and the Graphical Layout User Environment (GLUE) tools within
EDGE/Ada are available to help in accomplishing this goal.

* In the third task, Generate Subsystem Implementation, application engineers again use
EDGE/Ada to generate the Ada code that can then be integrated with the rest of the applica-
tion. '

* Inthe Apply Test Cases task, application engineers extract the appropriate test materials that
support the assets selected in the previous step and apply them in a working or simulated
application context. The test cases that are available need to be applied in the same context in
which the code generated from the assets must execute.

93

7.0 Apply Asset Base STARS-PA19-S007/001/00

* The fifth task, Tailor Documentation, also starts with some baseline material developed dur-

ing domain engineering that describes the abstract properties and behavior of the assets avail-
able from the asset base. Application engineers now must make this information concrete and

reflective of how the assets are going to applied in the current application. If the application
context was largely anticipated during domain engineering, this task may not require signifi-
cant resources to complete.

Sequencing
. * Tasks in the Applv Asset Buse phase lend themselves to sequential execution. Contrary to

most of the other DAGAR phases and tasks, the five tasks of Apply Asset Base can be
planned to occur in more or less sequential fashion. The compose and generate tasks will typ-
ically be performed in an integrated fashion, but even here, a complete composition activity
can be performed prior to the first generation of Ada code. After code is available it can be
tested. Documentation tailoring does not need to wait until testing is complete, but there is no
essential harm in waiting, especially if some asset selections are tentative subject to testing

results.

e Impact of Generation-centered application development. DAGAR features an integrated use
of an Ada code generation capability. In most cases, the context of use for the generated code
will be in combination with handwritten Ada code. This integration may require the applica-
tion engineer to at least visually inspect the generated output when considering integration-
related issues or problem solving. If the generated code requires modifications in support of
integration, the best procedure to follow is to inform the domain engineering team and have
asset base changes made to the assets themselves. The application engineer then re-generates
the Ada code to complete integration. If time constraints prevent such changes being made at
the source level, some temporary patches can be applied to the generated Ada code files. The
application engineering team should be in communication with the domain engineering team ‘
to insure that indicated changes are eventually made to the asset base.

94

STARS-PA19-5007/001/00 7.1 Plan Application of Asset Base

7.1 Plan Application of Asset Base

Asset base application is part application engineering. Since support exists within the EDGE/Ada
toolset for interaction with the asset base, the application engineering team needs to plan for how
it can best be served by the products of domain engineering. This section of the DAGAR process
covers some issues that must be addressed by the application engineering team in light of the sup-
port offered by the toolset and the need to most effectively make use of this support.

Use of DAGAR constrains the method of asset integration with application code that is not part of
the asset base. DAGAR itself is based on the use of generation technology (implemented within
the EDGE/Ada toolset) rather than manual construction of assets. Planning must therefore focus
on how to best integrate generated code components with the rest of the application. While a gen-
eration approach might not be suitable for every domain, a significant number of domains can
effectively be served with the application of DAGAR and its supportive toolset. When an applica-
tion intersects with one or more of these domains, significant reuse opportunities exist that can
and should be exploited. This planning step insures that project methodology is adapted to best
make use of these opportunities.

Another consideration to be made during planning is how the infrastructure available through
EDGE/Ada will be provided to application engineers to allow selection of assets from the asset
base in a manner appropriate to their application. The EDGE/Ada toolset provides tools to allow
the application engineer to automatically select assets based on the asset base architecture. Train-
ing in the use of these tools must be budgeted and scheduled.

Apply asset base

. Compose Generate Apply Tailor
subtype subsystem test cases documentation
implementation

Plan
application

Exhibit 39. Plan Application of Asset Base Process Tree

The primary purpose of the Plan Application of Asset Base task 1s to determine how the asset base
will be used in the application system, and which parts of the asset base meet system require-
ments. Integration issues must also be considered for how the assets will integrate with other parts
of the system. The plan must consider both what sort of application will be using the assets and
when the assets will be needed. If asset base construction is underway at the same time that appli-
cation development is proceeding, the completion of asset base products can be staged in a way
that accommodates domain engineering resources and application engineering needs.

The use of DAGAR features a specific binding of particular asset implementation technology
choices to the production of individual assets. Application engineers require sufficient training in
the methods of generator-based engineering in order to be successful. By grounding the syntax
and semantics of the component specification language in Ada, it is expected that engineers with
Ada development backgrounds will find it easy to move between Ada and the use of DAGAR to
- produce the various parts of the application.

If the structure and content of the asset base is sufficiently compatible with the needs of the appli-
cation, there should be little if any need to modify the generated code. Any interface incompatibil-
ities should be reported back to the domain engineering team in consideration of changing the
source code of the components and/or realms to remove these incompatibilities. The code gener-

95

7.1 Plan Application of Asset Base STARS-PA19-S007/001/00

ated by EDGE/Ada is Ada in a form that will be readable and close in style and presentation to
good quality handwritten code. Planning should address how the application engineering project
will handle any mismatches between code produced from the asset base and code that makes up
the rest of the application, especially in light of constraints in the application engineering sched-
ule as a whole.

Approach

There is no support built-in to EDGE/Ada to develop the Asset Base Application Plan. The appli-
cation engineering team should use whatever standard planning tools are in use within the organi-
zation. Concerns to be addressed in the plan include: personnel constraints, training schedule and
resource commitment, overall application development schedules, coordination with on-going
domain engineering activities, testing of assets in their application context and production of tai-
lored documentation that also reflects the application context.

Workproducts

W ASSET BASE APPLICATION PLAN

This plan contains describes the application engineering team’s proposed effort to construct at
least part of the application using assets and supporting material extracted from the asset base. It
contains a descriptive summary of how the basic sub-tasks of Apply Asset Base are to be per-
formed within the context of the organization’s own strategic plan. Since the resources obtained
from the asset base form only part of the application, special attention must be paid to how the
asset base material is combined with other application resources. The plan also should address
how feedback is given to the domain engineering team and how updates to the asset base are later
reflected in changes to the assets that were integrated into the application previously.

When to Start

* Asset Base judged ready for use. Completion of the ASSET BASE is not necessary prior to
beginning the development of the ASSET BASE APPLICATION PLAN. However, the asset base

. must be sufficiently stable that is possible to understand what functionality and features will
be available in the asset base so that planning how much application coverage is possible
from the asset base is possible.

* Overall application development effort about to begin. Application development planning as

a whole should be complete or nearly so. The application engineering team should be ready
to begin concentrated application development where near-term use of the asset base is antic-

ipated.

Inputs

* ASSET BASE. The contents of the ASSET BASE itself are the most basic underlying informa-
tion source for the construction of the ASSET BASE APPLICATION PLAN.

Controls

* APPLICATION SYSTEM REQUIREMENTS. While domain engineering must consider constraints
that arise from a number of identified or anticipated customers, application engineering typi-
cally is concerned with the needs and wants of a single customer — the one paying for the
application under construction. The requirements for this application will drive all aspects of

96

STARS-PA19-5007/001/00 7.1 Plan Application of Asset Base

the application development process, including the intended or potential use of asset base
resources.

Activities

The activities included in this subsection should not be viewed as requiring sequential perfor-
mance. Nor should the list of these activities be viewed as an exhaustive list.

» Assess experience of application engineering personnel

Any plan needs to consider and reflect the potential performers of the plan. In particular, any new
technology approach requires people open to the use of innovative techniques and the willingness
to learn how to apply these techniques. In preparing the ASSET BASE APPLICATION PLAN, the
application engineering team should be evaluated to see what impediments might exist to carrying
out the plan.

» Plan for DAGAR training activities

For personnel who are identified as being open to the use of DAGAR, but are not yet trained in its
use, this training needs to be planned and offered as appropriate. Because of the significant tool
support provided through EDGE/Ada, this training is not substantial but nonetheless needs to be
scheduled and given prior to serious usage of the ASSET BASE.

» Consider impact of ASSET BASE integration with surrounding Application

Where a significant amount of the application under construction is not provided through use of
the ASSET BASE, planning must consider how and when integration activities must be performed
to produce the final application. If the application engineering team has not had any experience
with use of the ASSET BASE, successful integration may present problems so that sufficient time °
and personnel resources need to be budgeted to complete this integration. Another reason to plan
this activity carefully is that the EDGE/Ada toolset does not offer any support for these integra-
tion activities. Finally, if the ASSET BASE itself has not had many application users of its
resources, there may be problems with the assets that will only be made visible during integration.

» Plan interaction between domain engineering and application engineering

An organization will be composed of one or more application engineering teams and one or more
domain engineering teams. Successful growth and quality improvement in the ASSET BASES sup-
ported by the domain engineering teams assumes that feedback and feed-forward activities are in
place within the organization that carry important communications back and forth across the
teams. A single application engineering team needs to identify how it can tap into this information
flow and provide bug reports and feature requests back to the team responsible for the ASSET
BASE being used. The application team also should have procedures in place to receive and act on
changes that are made to the ASSET BASE.

» Plan integrated testing of assets in application context

Assets will have been tested in their more general asset base membership roles, but will not have
been tested and evaluated in the specific application context of interest to the application engi-
neering team. After integration concerns, this testing is the most crucial activity for successful use
of the ASSET BASE. Planning should allow adequate time and resources for completion of applica-
tion-specific testing.

97

7.1 Plan Application of Asset Base STARS-PA19-S007/001/00

» Plan for adaotatidn and integration of ASSET BASE documentation with other application
materials

- As identified during integration activities, a number of supporting ASSET BASE materials will

need to be obtained and adapted for use in the current application context. The materials that exist
for assets in the ASSET BASE will need to be evaluated in terms of their completeness and cur-
rency for the application under construction. Again, sufficient resources must be budgeted for
adaptation and extension of these materials.

When to Stop

* ASSET BASE APPLICATION PLAN sufficiently complete. In a very basic sense, the application
engineering team can stop this activity when they have achieved what they expected to
achieve: a sufficiently complete and understandable plan is in place that can be used to
inform, monitor and measure the actual application of the ASSET BASE to the overall applica-

tion engineering effort.

* Feedback mechanism to domain engineering team in place. Successful amortization of the
cost of producing the ASSET BASE assumes successful applications of the ASSET BASE. The

asset base will improve only if users of the asset base take the time to provide feedback. It is
vital that at the end of the planning activity, each application engineering effort have identi-
fied how it will provide this feedback.

Guidelines

 Inexperienced application engineering teams require more detailed plans. Plan development

should be adapted to the anticipated needs of the followers of the plan. If the team performing
asset base application is relatively experienced, they will need less detailed plans and less
careful monitoring. Conversely, a team with no experience will need a detailed plan with sub-
activities within the plan carefully explained. The type of plan needs to be driven by the
plan’s anticipated audience.

* Parallel application and domain engineering efforts should be reflected in integrated plans.
Significant opportunities for fertile cross-communication can be lost if communication
opportunities are not reflected in the plans.

 Just-in-time planning risky. While the production of a complete plan is not required before
the Apply Asset Base phase starts in earnest, it is generally a mistake to stagger the production
of the plan too tightly with the performance of segments of the plan. Such an approach makes
it easy to loose sight of the larger picture of application development and miss opportunities
for more efficiently performing application development.

98

STARS-PA19-S007/001/00 7.2 Compose Subsystem

7.2 Compose Subsystem

The assets and asset base support system presented through EDGE/Ada are used by the applica-
tion engineer in the construction of at least a portion of a larger system that is the ultimate goal of
a system engineering effort. Typically, the portion of the overall subsystem addressed by the asset
base falls at the level of a subsystem whose elements are currently part of the asset base. The
infrastructure helps the application engineer determine which assets among those available in the
asset base are most appropriate for the system being built and also guides the engineer in compos-
ing the assets together in a configuration that can be integrated into the application as a whole.

Apply asset base

Plan
application
of asset base

Generate Apply Tailor
: subsystem testcases documentation
implementation

Exhibit 40. Compose Subsystem Process Tree

The primary purpose of the Compose Subsystem task is to produce a specification of the sub-
system in a form that allows the generation of Ada code that can then be integrated into the appli-
cation itself. There are two primary interfaces provided in EDGE/Ada to the application engineer:
a graphical view of the asset base architecture where the choices available at each choice point
(realm) in the architecture are depicted in a tree format, and a structured conversation (dialogue)
presented by EDGE/Ada where the engineer can respond to questions prepared by the domain
engineer that help to determine which assets (components) in the asset base best meet the needs as
understood by the application engineer. If the application engineer prefers to use the tree to manu-
ally inspect and walk through the architecture, it will be up to the engineer to inspect and learn
about the components to choose which of them should be selected for use in the application. The
dialogue method, in addition to presenting structured information about the components, also uses
the tree view to show how the component fit together in terms of the architecture.

The information presented through EDGE/Ada to the application engineer is only as good and
complete as it can be understood by the domain engineers who construct the asset base. The
knowledge necessary to do a thorough job in this regard will likely be imperfect at the beginning
of period of asset base application. As such, the domain engineering team may need to be active
as consultants to the application engineering team during initial applications of the asset base.
Knowledge gained during early uses can then lead to significant improvement in the information
captured and presented through the asset base infrastructure and thereby enable eventual stand-
alone use of the EDGE/Ada tools in support of subsystem composition from the asset base.

Approach

Through the production of the ASSET BASE APPLICATION PLAN, the application engineering team
will have a fairly clear idea of the objects and services available in the asset base and the extent to
which these can meet the needs of selected portions of the overall application. A segment of the
application engineering team will receive any necessary training in use of EDGE/Ada before the
process of selecting and configuring assets from the asset base is slated to begin. If necessary, the
domain engineering team may demonstrate and explain the features of EDGE/Ada, in particular
the Architecture Configuration Assistant (ACA), prior to entering the phase of application engi-
neering in which the asset base services are directly needed. The designated application engineer-
ing team members will then use EDGE/Ada to make decisions about which assets to select and

99

7.2 Compose Subsystem STARS-PA19-S007/001/00

how they are to be combined with each other. As a consequence of choices made by the applica-
tion engineer, an internal data structure — the SUBSYSTEM EQUATION — will be created automat-
ically. This data structure is then used to produce the Ada code that will be integrated with the rest
of the code making up the final system application.

Workproducts

B SUBSYSTEM EQUATIONS

A SUBSYSTEM EQUATION is an internal data structure generated and updated by EDGE/Ada that
documents the component choices made by the application engineer for each realm whose ser-
vices are required in the final application. For any component that itself depends on realm param-
eters, the component selections made for each of these parameters is also defined by a clause
within the set of SUBSYSTEM EQUATIONS. A printable form of the set of SUBSYSTEM EQUATIONS,
using the syntax of the Architecture Specification, can be generated from EDGE/Ada. Exhibit 41
illustrates the appearance of a section of a SUBSYSTEM EQUATION listing for a subsystem to be
derived from a preliminary version of the ELPA domain architecture.

When to Start

* ASSET BASE APPLICATION PLAN sufficiently complete. The actual usage of the ASSET BASE,
which is the main purpose of this task in the DAGAR process, should not be attempted before
a sufficiently clear plan is in place for learning to what extent the functionality to be provided
by the application is already available within the ASSET BASE. While alterations to the ASSET
BASE APPLICATION PLAN can be expected to continue throughout any extended application
development activity, the plan must be sufficiently clear at the beginning of the task so that
engineers performing the task know what to expect from the ASSET BASE and realize what
other resources besides those available from the ASSET BASE are required of the application.

* Capabilities available within the ASSET BASE needed to continue application development.

Basically, serious investigation of the Asset Base and preliminary navigation through, and

selection of, components from the asset base must take place as soon as the resources and ser-
vices provided by the components are required to continue implementation of the application.
Application engineers will turn to EDGE/Ada when that stage of the application development

lsystem <Services> Test_Bed;

system <Fix_Calculation> Test_Fix;
system <Eigen_Calculation> Test_Eigen;
system <Coordinate_Transformations> Test_Transform
Test_Transform =
Coordinate_Transformations_GRCS4 [Vectors_GRCS4,

Test_With Files];

Test_Eigen = Eigen_Calculation_GRCS4 [Vectors_GRCS4,
Test_With_Files];

Test_Fix = Fix_Calculation_EV[Vectors_GRCS4, Test_Transform,
Test_Eigen, Test_With Files];

Test_Bed = Test_ELPA[Test_Fix, Test_With_Files];

Exhibit 41. Sample set of Subsystem Equations

100

STARS-PA19-S007/001/00 7.2 Compose Subsystem

is reached that requires components from the asset base be made available for integration
‘ with the entire suite of application code.

Inputs

* ASSET BASE. The ASSET BASE consists of the domain architecture in the form of an ARCHI-
TECTURE SPECIFICATION along with a set of realms and components. The Architecture Con-
figuration Assistant provides the application engineer with a guided tour through the ASSET

"BASE and enables choices to be made for each component slot contained in the architecture
that is identified as being required in the application.

Controls

® APPLICATION SYSTEM REQUIREMENTS. In learning about the ASSET BASE'’s features and char-
acteristics, the application engineer is guided ultimately by the requirements at hand for the
application. Along with the information about the assets themselves that is integrated into the
ASSET BASE infrastructure and supporting materials, external circumstances and dependen-
cies must be used to interpret this information and evaluate its importance and relevance.

* ASSET BASE APPLICATION PLAN. As mentioned several times previously in this document,
this plan should be relied upon to give crucial guidance about how to approach the ASSET
BASE and what needs the ASSET BASE can be expected to fulfill.

Activities

The EDGE/Ada toolset provides the means for automatically generating a subsystem from the
. asset base, based on choices made by the application engineer. As introduced in the preceding
section, the application engineer can use either the ACA or GLUE to pick components and com-
pose the subsystem. Exhibit 42 shows a screen snapshot of the ACA being used to select a matrix:
component for use in an application subsystem. The application engineer can also obtain docu-
mentation and test materials for the chosen components from the asset base, if these are available.

The ACA is the preferred means of interacting with the asset base because the ACA automatically
enforces component composition rules. It is impossible to produce a composition of assets from
-the asset base that breaks the component composition rules. Where there are unique component
choices for a given realm, or where selection of a component in one part of the architecture forces
selection of a unique component in another part, such selections are made automatically. As
shown in Exhibit 42, selections made within the ACA are automatically reflected in the graphical
architecture display provided through GLUE.

» Invoke ACA using the ASSET BASE data structures managed by EDGE/Ada

Using the consulting services of the domain engineering team as necessary for training and sup-
port, the application engineer begins by opening up an architecture view into the domain architec-
ture through the ACA. The ACA will guide the user through a series of question and answer
dialogues aimed at determining which component variants available at multiple points in the
architecture are most appropriate to the needs and goals of the application engineer. Each answer
given by the application engineer helps to narrow down the field of available choices and even
make some consequential selections automatically. These selections are reflected in increasing
amounts of detail being added to the SUBSYSTEM EQUATIONS being produced by the toolset.
When the last question is answered, enough information has been obtained from the application
‘ engineer to completely specify which code specifications and bodies must be generated to give

101

7.2 Compose Subsystem STARS-PA19-5007/001/00

Exhibit 42. ACA and GLUE applied to Matrix Component Selection

the application engineer the best fit possible from the ASSET BASE. The graphical display is
updated automatically as answers to questions lead to component selections being determined.

Alternatively:

» Invoke GLUE using ASSET BASE data structures.

If désired, the GLUE graphical display capability of EDGE/Ada can be accessed directly to see
the alternatives that exist for each realm and for matching components within a realm for each of
the realm parameters that exist for a particular component. These alternatives are displayed graph-
ically as illustrated in the right hand side of Exhibit 42. There is no help offered in deciding which
of the alternatives depicted in the graph are advantageous. The application engineer must be will-
ing to examine Realm Descriptions, Component Specifications and Component Bodies to manu-
ally determine goodness of fit.

When to Stop
* EDGA/Ada has produced a workable subset of SUBSYSTEM EQUATIONS. The stopping crite-

ria for this task is easy to state: sufficient delineation of the available choices has led to a con-
sistent and complete set of Subsystem Equations as produced by the appropriate EDGE/Ada
tool. These equations must be complete enough to carry out the generation of Ada code for
eventual integration into the overall application.

Guidelines

* Application engineers require training to understand generator based approaches. Even good ‘

102

STARS-PA19-S007/001/00 7.2 Compose Subsystem

Ada engineers need to be given time to learn and get comfortable with engineering tech-
niques that incorporate fundamental dependence on the use of software generation. While
learning how to use the toolset must be part of this training, this learning is not the most fun-
damental. A mindset is required that is open to code bodies and segments that are not hand-
written but generated. A trust in the ability of the domain engineering team to produce
efficient and correct components is also required

* Early. coordinated use of the ASSET BASE will help improve ASSET BASE quality. If possible,

sustained and cooperative parallel activities coordinated across the domain and application
engineering teams should be arranged to help lessen the risk of a mismatch between domain
engineering activity output and required application engineering activity input.

103

7.3 Generate Subsystem Implementation STARS-PA19-S007/001/00

7.3 Generate Subsystem Implementation

This task is a companion task to Compose Subsystem in that the subsystem configuration defined

- during the composition task must now be processed to produce the set of Ada files that implement
the subsystem. These files are then integrated into the overall application by the application engi-
neer. The system generation task is directly supported by EDGE/Ada where the act of generation
is available as a command. The generated files are stored in the application engineer’s working
directory. If desired, Ada compilation of these files can be also be arranged from within the
EDGE/Ada toolset.

Apply asset base

Apply Tailor
st cases documentation

Plan Compose Generate
application subtype

of asset base

Exhibit 43. Generate Subsystem Implementation Process Tree

The primary purpose of the Generate Subsystem Implementation task is to prepare for final inte-
gration and use of the subsystem whose structure and components have been selected from the
asset base. Rather than retrieving components from a reuse library, DAGAR components must be
processed according to the realm parameter bindings that were made during subsystem composi-
tion. This processing will typically not require any manual intervention as the bindings are
defined via the Subsystem Equations produced the ACA.

In the case that the “subsystem” is more or less stand-alone, the resulting Ada code will comprise
a complete and testable system that is ready for routine evaluation and test procedures that will
verify the suitability of the assets in their intended application context. However, in the general
case, the generated subsystem forms a more complex portion of a larger system that must now be
evaluated and tested in this larger context. Domain engineering, and in particular EDGE/Ada,
cannot be expected to help the application engineer perform these integration activities. Depend-
ing on the extent to which manual steps must be taken to complete the integration, significant
resources can be required to finally determine the quality and goodness-of-fit between the asset
base and the needs of the current application.

Approach

The standard approach to follow in generating the application subsystem is to use the services of
EDGE/Ada which make the production of the subsystem a basically mechanical operation. For
first-time uses of the ASSET BASE, and also for first-time or inexperienced users of the EDGE/Ada
tools, the first subsystem generated may not have the best or expected properties when integrated
into the rest of the subsystem. The application engineer may need to re-apply the Compose Sub-
system task and following this, re-apply the Generate Subsystem Implementation task to better
meet the needs of the application. :

104

STARS-PA19-S007/001/00 7.3 Generate Subsystem Implementation

Workproducts
B SUBSYSTEM

A DAGAR Subsystem is a set of Ada specification and body files that are able to be compiled and
integrated (linked) with the rest of the application. All internal DAGAR dependencies and
extended Ada statements have been replaced with compilable Ada that is ready to be compiled,
linked and tested. Some examples of Ada code produced from DAGAR realm and component
specifications are given in Exhibit 44 and Exhibit 45.

When to Start

* SUBSYSTEM EQUATIONS complete. As soon as a complete set of bindings, normally through
execution of the ACA, between components and associated realm parameters has been made,
the application engineer is ready to begin subsystem generation. In the case of a large sub-
system, with several separable branches, generation can begin for some of the branches while
final composition and configuration activities are ongoing for the other branches.

Inputs

* ASSET BASE. The Ada code to be produced in this task depends on the availability of a com-
plete set of realms and components which are the core of the ASSET BASE.

* SUBSYSTEM EQUATION. As discussed above, the generation process relies on a collection of
validated realm parameter to component bindings. These bindings are captured in a set of
SUBSYSTEM EQUATIONS as illustrated in Exhibit 41.

Controls

This task essentially has no controls of its own. Its performance is directly tied to the Compose
Subsystem task and the controls of this task are indirectly applicable to the task of component gen-
eration.

Activities

ACA and GLUE generate SUBSYSTEM EQUATIONS, based on the choices made by the application
engineer. These equations contain complete information about the Ada code to be generated based
on the application engineer’s component selections. The EDGE/Ada toolset automatically gener-
ates Ada code for the subsystem based on the subsystem equations. If desired, the generated code
can automatically be compiled through EDGE/Ada. The application engineer just needs to make
the appropriate selections through EDGE/Ada’s user interface.

For example, given the matrix realm and components shown in preceding exhibits (see

Exhibit 24, “Partial Matrix Processing Services Realm Description,” on page 46, Exhibit 32,
“Complete Matrix Component Specification,” on page 71 and Exhibit 34, “Partial Matrix Compo-
nent Body,” on page 76), the application engineer will have selected a particular component to
instantiate the Matrix realm, and all of the components that must be matched against any realm
parameters that the selected component requires. EDGE/Ada then produces the resulting Ada
packages (specifications and bodies) that correspond to the architectural choices made. Exhibit 44
and Exhibit 45 illustrate segments of a generated Ada package specification and body when the
Std_3_Matrices component is selected in the Matrix realm and when the Std_Vectors
component is selected to match the Vectoxr realm parameter.

105

7.3 Generate Subsystem Implementation STARS-PA19-S007/001/00

.- This is a realm that defines operations between 2x2 symmetrical
hnatrices;

- 3x%3 symmetrical matrices; 2x2 non-symmetrical matrices;

-- 3x3 non-symmetrical matrices;

lvith Sstd_3_Vectors;

lvith Computation_Support;

use Computation_Support;

lvith ELPA_Support; use ELPA_Support;
lvith Base_Support; use Base_Support;

backage std_3_matrices is
type Matrix_Index is new Integer range 1..3;

type Matrix is array
(Matrix_Index, Matrix_ Index) of Real;

function "+" (Left, Right : in Matrix)
return Matrix;

ifunction "*" (Left : in Matrix;
Right : in Std_3_Vectors.Vector)
return Std_3_Vectors.Vector;

ffunction "*" (Left : in Std_3_Vectors.Vector;
’ Right : in Matrix)
return Std_3_Vectors.Vector;

lend std_3_matrices;

Exhibit 44. Generated Ada Matrix Package Spec

When to Stop
* Compilable subsystem code available for integration. This task is a veritable push-button

operation. It is over when the results of pushing the button have been generated and are ready
for use in the rest of the application construction process. Later, upon attempting integration
and subsequent application context testing, it may be determined that there are some prob-
lems with the code as generated. The best response in such a situation is to report problems
back to the domain engineering team, or simply make alternate selections during a re-appli-
cation of the Compose Subsystem task.

Guidelines

e Attempt application integration early. If the ASSET BASE is constructed for early, prototypical
use, the best usage approach will be, as early as possible during application engineering, to
arrange for a trial application of the both the composition and generation tasks to produce
actual code that can be integrated and tested in the expected application context. ASSETS in
the ASSET BASE will have been tested in stand-alone fashion, but they cannot have been
tested in many application contexts. Nor will the ease of use and integration of ASSETS pro-
duced from the ASSET BASE be assured, especially for early users of the asset base. As a risk

106

STARS-PA19-5007/001/00 7.3 Generate Subsystem Implementation

-~ File: std_3_matrices_b.k

.}- This body implements the matrix operations for any 3*3 matrix

function "+" (Left, Right : in Matrix) return Matrix is

Result : Matrix;

function "*" (Left : in Matrix;
Right : in Std_3_Vectors.Vector) return Std_3_Vectors.Vector
s
Vector_Index : Cartesian_Coordinates := Cartesian_Coordinates'First;
Result : Std_3_Vectors.Vector;
begin -- "*"

for Column_Index in Matrix_Index loop
Result (Cartesian_Coordinates'Val (Column_Index - 1)) := 0.0;
for Row_Index in Matrix_ Index loop
Result (Cartesian_Coordinates'Val (Column_Index - 1)) :=

Result (Cartesian_Coordinates'Val (Column_Index - 1)) +
(
Left (Column_TIndex, Row_Index) *
Right (Cartesian_Coordinates'Val (Row_Index - 1))
)i
end loop;
end loop;

return Result;

Exhibit 45. Generated Ada Matrix Package Body

mitigation strategy, the application engineering team is encouraged to perform trial runs of
component selection, generation and integration. Such trial runs will make members of the
team more familiar with relevant pieces of the EDGE/Ada toolset and at the same time allow
the team to experience integration and related testing experiences first hand. Depending on
how robust and functional the selected, prototypical assets are, some preliminary integration
testing can take place as well. If the asset base is complete enough, and the application con-
test is sufficiently stable that the nature of the services and coverage to be obtained through
the asset base 1s known, candidate final asset base selections can be made. The application
itself may still be skeletal in nature so in-context testing of the generated code may not be
possible. However, early interface compatibility can be verified and if problems are discov-
ered here, there will be sufficient time to correct such problems.

107

7.4 Apply Test Cases STARS-PA19-S007/001/00

7.4 Apply Test Cases

~As soon as the application context for which the ASSET BASE material created through the previ-
ous two tasks is sufficiently complete, the application engineer will typically apply test cases.
These test cases, and the test procedures to apply them, may be made available through the ASSET
BASE itself. However, because each application context is unique, the application engineer may
need to modify the test material, the test procedures, or both to obtain adequate assurance that the
code produced from the ASSET BASE is appropriate in the current context. In addition to test mate-
rial provided through the ASSET BASE, test data and application-level test procedures available to
the application engineering team through other sources may be applicable to the area of the appli-
cation covered by the asset base. The ASSET BASE code must pass tests derived from this materi-
als as well.

Apply asset base

Plan Compose Generate Tailor
application subtype subsystem documentation
of asset base implementatio

Exhibit 46. Apply Test Cases Process Tree

The primary purpose of the Apply Test Cases task is to verify the functionality and performance of
those portions of the application produced directly from the ASSET BASE in the intended applica-
tion context. Testing for ASSETS located in the ASSET BASE will have been done as part of domain
engineering but such tests will have been, at best, applied in simulated application contexts. How-
ever, faults that are detected through application-specific testing may reveal internal faults in the
ASSETS themselves that will need to be addressed by domain engineers maintaining the ASSET
BASE.

In the heat of application development, defects in that portion of the application provided by
ASSET BASE material may need to repaired manually within the code physically integrated into
the application. There may be a tendency to ignore or postpone reporting such defects back to the
appropriate domain engineering personnel. Such failures to report will eventually cause the
ASSET BASE to deteriorate. Also, ASSET BASE defects reported by other application users that are
eventually addressed by corrections to the Asset Base may then need to backfilled into application
contexts that had not yet experienced the defect. If such fixes are merged into the application, an
additional round of testing may be required to verify that no other defects are introduced.

Approach

After composing and generating the ASSET BASE material in application-usable form, any avail-
able test material that is provided along with the ASSETS is assembled and prepared for use. Test
procedures, test reporting practices and test application methods in effect within the overall appli-
cation engineering effort are applied and test results recorded. Any subsystem software which
fails to perform as expected must be analyzed further to try and learn the cause of the failure. Any
failures traceable to the structure and content of code produced from the ASSET BASE must be
reported back to the domain engineering team for corrective action. When necessary, local
patches to integrated code may be necessary to keep projects on schedule. These patches should
be considered only when waiting for official updates to the ASSET BASE results in unacceptable
delays to application delivery schedules. Additional specialized testing (e.g. timing and capacity
tests) may be required before the subsystem is determined to be ready for integration in a larger

108

STARS-PA19-5007/001/00 7.4 Apply Test Cases

system being developed by the application engineering project. There will be fewer defects for
mature ASSET BASES with which there has been significant application engineering activity.

Workproducts

B TEST REPORTS

TEST REPORTS are those produced by the application engineering team for use within the applica-
tion engineering effort per se. These reports are formatted according to application engineering

standards and are combined with other application level quality assurance documents.

B ASSET BASE TROUBLE REPORTS

ASSET BASE TROUBLE REPORTS are produced during application context testing but are meant for
communication back to the domain engineering team. These reports address problems traceable to
the form, behavior or results of application code that was derived from the ASSET BASE.

Whien to Start

* Immediately upon integration of ASSET BASE material with application. It is never too soon
to start testing activities. As long as a workable application framework is in place, and the
code generated from the ASSET BASE is actually capable of producing results, these results
should be checked against expectations. If the ASSETS themselves are only skeletal proto-
types of what will later evolve into completely functional versions, early testing may be lim-
ited to checking interface correctness.

Inputs

* ASSET BASE. In addition to the realms and components that make up the ASSET BASE, sup- .
plementary materials supporting use of the ASSETS will usually be available. Such testing
materials can provide the basis for application-specific testing.

* SUBSYSTEM. The actual code produced from the ASSET BASE must be available in com-
pilable form. Upon compilation and linking with the rest of the application, testing of the
ASSETS in their intended application context can proceed.

Controls

* ASSET BASE APPLICATION PLAN. Ad hoc testing should be avoided. A certain amount of test-
ing of the ASSETS will have already occurred. Further testing should take place with a clear
understanding of what is to be gained by the testing and what level of response there will be
if system defects are detected as a result of the testing.

Activities

A detailed description of testing activities is out of the scope of this document. The application
engineering team is expected to have in place its own quality assurance process and the activities
defined as part of this process will be followed here. The only aspect noteworthy of mention is
that in deciding to use the results of domain engineering to partially fill needs within the applica-
tion, the application engineering team has an obligation to report back testing results as these
identify defects that are traceable to the ASSETS themselves. The ASSET BASE TROUBLE REPORTS

109

7.4 Apply Test Cases STARS-PA19-S007/001/00

format should be followed in making these reports. Any regression testing activities that are part
of the application testing process may need to be expanded to include the case where ASSET BASE
updates may cause code that was generated from the asset base to become obsolete. Under certain

_circumstances, it may be necessary to decline the inclusion of newly generated code because the
cost of re-validating the code as embedded in the application may be too high (assuming of course
that the remedied defects do not directly impact the current application context).

When to Stop
* All applicable test procedures have been applied. Testing can stop when none of the defects

that the test data and test procedures were designed to expose are detected in the software
under test. If test cases have led to the detection of defects, these defects are identified and
appropriate modifications made. The tests are subsequently re-applied to see if the defects
have been removed.

* No new ASSET BASE changes have been made. If there is parallel domain and application
engineering activity, preliminary use of ASSETS from the ASSET BASE may need to be re-val-
idated as newer versions of the Assets come available. At some point, ASSET updating will
cease and the need to re-test code re-generated from the updated assets will disappear. For a
rapidly evolving ASSET BASE with a tight application delivery schedule, the application engi-
neering activity may need to halt its openness to new ASSET versions as long as the latest ver-
sion integrated into the application passes the current test suite.

Guidelines

* Begin testing activities as soon as possible. The earlier defects are uncovered, the easier they
are to correct, and the more time exists in which to correct them. Preferably, Asset defects
should be fixed by the domain engineering team members who are maintaining the Asset ‘
Base. If integration testing is scheduled early, there will be more time for this process to be

completed.

* Assign specific application engineering team member to interface with Asset base mainte-

nance staff. As discussed above, application engineering schedules may prevent timely dia-
logue between the application and domain engineering teams. Even if the application
production schedule is not constrained, engineers often want to fix things the easy way,
focusing on fixing things in place. Because the quality of the Asset Base depends on good
and effective feedback, there is a danger that if problems go unreported, or not reported
through proper channels, opportunities for improvements to the Asset base will be missed. To
lessen the risk of this happening, a named advocate for cross-team communication should be
appointed who has the responsibility of preparing the Asset Base Trouble Reports and coor-
dinating Asset Base improvements with the application engineering team.

110

STARS-PA19-S007/001/00 7.5 Tailor Documentation

7.5 Tailor Documentation

In addition to ASSET BASE test materials that exist in template form and are then adapted for use
in a particular application context, documentation material for ASSETS may also be available in
the Asset Base. This material will also need to be tailored and completed for it to be useful in a
particular application context. In the case of a large subsystem that at its lower levels can be com-
pleted in a variety of ways, documenting how the subsystem works completely will depend on
which variants are in fact selected in a particular context. The upper levels of the documentation
can have placeholders for describing what goes on at lower levels. But the substitution for these
placeholders must take place after the component selections have been made. After an applica-
tion-specific selection has been made, a full set of substitutions for placeholders within the vari-
ous document templates can take place with a resulting complete set of documentation produced..

Apply asset base

Plan Compose Generate Apply
application subtype subsystem test cases :
of asset base implementation

Exhibit 47. Tailor Documentation Process Tree

The primary purpose of the Tuilor Documentation task is to make sure that after the determination
has been made on how the ASSET BASE can be used to fill the requirements present in the applica-
tion, the necessary descriptions of how these services work are obtained and any required user
documentation that is derived from the Asset Base is integrated into the complete documentation
set needed to support the application. While there is EDGE/Ada support for selection of ASSETS
and generation of code based on these assets, there currently is no support for either application- -
specific testing or document production. Application engineers will normally have a number of
document production tools at their disposal. The documentation material accessible through the
ASSET BASE will need to be evaluated for applicability based on which components were selected
for use in the application. Documentation related to these components will then be manually pro-
cessed to extract sections to be integrated into the overall documentation set. It is expected that
future versions of EDGE/Ada will support some form of document composition that corresponds
to component composition.

Whereas it is important to test early and often, documentation preparation should be delayed until
the selection of components to support code generation is finalized. As the final stages of gener-
ated code integration and testing is taking place, documentation specialists can weave into appli-
cation system documentation sections appropriate to the components that have been finally
selected. There is also a problem of updating system documentation in response to improvements
in components and therefore component documentation. The component code generation update
process is automated, but test and documentation updating is not. Needless re-work needs to be
avoided, but improved components must eventually be reflected in improved documentation relat-
ing to those components. ‘

Approach
The documentation available from the ASSET BASE will typically be generic and will need to be

tailored by the application engineer to use application-specific terminology and to meet system-
specific documentation requirements. Application-level details are added to the documentation

111

7.5 Tailor Documentation STARS-PA19-S007/001/00

and the documentation (including documentation for system users and maintainers) is trans-
formed into its final form. If the documentation is constructed to make use of placeholders indi-
cating where lower level details depend on choices available in the architecture, these
placeholders will need to be replaced by detailed sections and passages that reflect which choice

1s made in the current application context.

Workproducts

M SUBSYSTEM DOCUMENTATION

The application engineer produces documentation using the tools and formats mandated by the
application engineering team. Documentation sections that reflect ASSET BASE-supplied services
must be integrated into the overall system documentation.

When to Start

- o Subsystem configuration derived from ASSET BASE complete. Because of the lack of docu-
mentation integration support, merging in documentation contributions from ASSET BASE
materials should be delayed as much as the application engineering schedule permits.

Inputs

e ASSET BASE. The ASSET BASE will normally contain documentation materials for most of the
components available for selection from the asset base. These can be available as separate
documentation files and may be written to reflect expected or possible composition relation-
ships among the components in the ASSET BASE.

Controls

* ASSET BASE APPLICATION PLAN. While the plan is an overarching control for all of the appli-
cation engineering activities, this plan primarily acts as a control on the production of the
final SUBSYSTEM EQUATIONS which control which components are used to generate the final
subsystem code. These equations also determine any compositional relationships that can be
applied to assembling document sections for integration into the application document set.

Activities

» Review final SUBSYSTEM EQUATIONS.

As noted above, not only do these equations determine how application code is generated, they
also indicate how structured documents that reflect the breakdown of functionality can be com-
posed to tell the whole story using the detailed pieces that describe how individual lower level
sections operate. For an ASSET BASE with a complete and segmented document set, where there is
a one-for-one (or nearly so) correspondence between DAGAR components and document files
(that describe the operations and services presented through these components), the SYSTEM
EQUATIONS can be read to understand which document must get plugged into which other docu-
ment to tell the big story in terms of the little stories.

112

STARS-PA19-S007/001/00 7.5 Tailor Documentation

» Integrate ASSET BASE document sections into Application documentation

This activity will be primarily a manual activity that converts the ASSET BASE document sections
into the documentation format being used by the application engineering team. This activity will
be harder if the services provided through the ASSET BASE are not well-localized in concentrated
areas within the application system. If ASSET BASE documentation sections are themselves com-
posed of other asset base sections, these local compositions should be accomplished first, again
using the application engineering team’s documentation tools. In the course of performing this
integration, any application-specific editing of the wording used in the ASSET BASE sections can
be carried out.

When to Stop
* ASSET BASE documentation integrated in Application documentation set. This documenta-

tion production activity will often be one of the last activities of a combined domain engi-
neering/application engineering activity. The task is over if the application’s document set
fully describes what the application does, and if the sections derived from the ASSET BASE
have been fleshed out and are well blended-in.

Guidelines

* Delay documentation related to ASSET BASE as much as possible. The reasons for this guide-
line have already been given. There will be less of a reason to delay once some EDGE/Ada

support exists for document composition to parallel the support already in place for code
component composition.

* Pick ASSET BASE document tools and formats in common application usage. Because the
documentation process is still unautomated, the less document conversion/re-formatting that
is required, the better. The domain engineering team should identify and adopt those docu-
mentation formats that are already being used in applications that are potential ASSET BASE
customers. If multiple formats are in use, both application and engineering teams should
invest in some document conversion infrastructure to easily convert content in one format to
another.

113

7.5 Tailor Documentation STARS-PA19-S007/001/00

114

STARS-PA19-S007/001/00 Applying DAGAR

Part III: Applying DAGAR

Part II presented a detailed description of the DAGAR process model. The model offers consider-
able.guidance for performing the DAGAR activities:

* Defining an asset base-architecture, based on a prescriptive domain model that describes the
requirements for the asset base architecture

* Implementing assets within the framework of the domain architecture

* Application of the domain assets through the selection of assets for a particular application,
or part of an application.

The purpose of Part III is to offer some general guidance in how to apply DAGAR with specific
domain engineering methods.

* Section 8 provides a description of how DAGAR can be used to support definition of an asset
‘base architecture and implementation of the asset base within the ODM domain engineering
life cycle. The section describes how DAGAR fits into ODM and how ODM can be tailored
to provide more direct support for the development of a DAGAR asset base architecture.

115

Applying DAGAR STARS-PA19-S007/001/00

116

STARS-PA19-8007/001/00 8.0 DAGAR as a Supporting Method of ODM

8.0 DAGAR as a Supporting Method of ODM

Although DAGAR can be used with other domain engineering methods, DAGAR directly sup-
ports Asset Base Architecture Definition and Asset Base Implementation as part of the ODM
domain engineering life cycle. Section 8.1 gives an overview of the ODM domain engineering
life cycle. Section 8.2 explains how DAGAR can fit into the overall ODM life cycle is described.
Section 8.3 gives some guidelines on tailoring ODM when used with DAGAR.

8.1 The ODM Domain Engineering Life Cycle

ODM domain engineering begins by planning the domain to be engineered. Project objectives are
set in relation to project stakeholders. Candidate domains are characterized and the domain of
focus is chosen. The selected domain is then defined by formally stating what is entailed by the
domain and clarifying what is in and out of the domain. The domain definition includes a domain
interconnection model, which defines the relationship between the domain of focus and other
domains.

Once domain planning has been completed, the domain is modeled. Domain modeling includes
developing descriptive models that document what has been implemented in the past and extend-
ing these models to include what might be implemented in the future. The domain model pro-
duced describes common and variant features within the domain and rationale for the variations.
The domain model will be used as a basis for selecting the range of variability to be supported by
assets in the asset base. A secondary product of the domain modeling phase is a domain dossier,
which documents the specific information sources used as a basis for modeling. The domain dos-
sier will be used to trace legacy artifacts that are candidates for reengineering into reusable assets
and to identify constraints in systems that assets will be migrated into.

After domain modeling, the asset base is scoped to derive an overall feature profile for the asset
base. Asset base scoping also includes characterizing the market for the asset base, that set of
application system contexts in which practitioners will potentially utilize domain assets. The key
function of this activity is to derive a subset of the features and potential customer contexts
described in the domain model that will be supported by the asset base. The resulting product is
called the asset base model. The asset base includes a map between customers and features show-
ing potential customers for features. A secondary product of asset base scoping is the asset base
dossier. The asset base dossier includes the domain dossier developed during domain modeling
and information about customer contexts for the customers that will be supported by the asset
base. '

Once the asset base has been scoped, an asset base architecture and assets are developed. Archi-
tectural concerns include ascertaining to what extent the design and implementation of assets is
constrained by the external interfaces anticipated by different customer contexts, as well as deter-
mining the internal structure and interconnections of components in the asset base. An architec-
ture is defined that adheres to these constraints. Then assets are implemented for portions of the
asset base. These assets can be implemented either using a generative or a constructive technique.

8.2 How DAGAR supports ODM

As shown in Exhibit 48, the Define Asset Base Architecture and Implement Asset Base phases of
DAGAR can be used to perform the Define Asset Base Architecture task, and Implement Asset
Base sub-phase of ODM. Assets are implemented in DAGAR using a generative approach, so the
ODM Implement Asset Base sub-phase is tailored in DAGAR to follow a generative asset
approach. Also, much of the infrastructure for applying the asset base is already implemented in

117

8.2 How DAGAR supports ODM

STARS-PA19-S007/001/00

Plan Domain
Set Scope Define
objectives domain domain
i Scope
Situate
Characterize | Select domain asset base
domains of domain
interest of focus Focus
Determine Define Bound domain Correlate
candidate selection ound features and
stakeholders criteria domain customers Select
Select features and
customers

stakeholders

Domain Engineering

Engineer Asset Base

Architect
asset base

mplement

identify ~ and objectives Prioritize
candidate features and
objectives Model Domain customers
Determine
external
architecture
constraints
Acquire Describe Refine
domain domain domain Determine intemal
information model architecture constraints
Z(esolye
Plan data omain
acquisition Model model
Develop features
7 lexicon Interpret
Elicit Model Integrate domain
data concepts descriptive model
Integrate models

data

Apply DAGAR Process

B
Apply
asset base

Plan
application
of asset base

Define asset
base architectur

Compose
subtype

Generate
subsystem
implementation

Implement
nfrastructure

Develop asset
documentation

test cases

Tailor
documentation

Apply

Exhibit 48. DAGAR as a supporting method of ODM

118

STARS-PA19-S007/001/00 8.3 Tailoring ODM for use with DAGAR

the EDGE/Ada toolset, so the DAGAR Implement Infrastructure task is confined to the determi-
nation of asset constraints. Since ODM is a Domain Engineering method which does not include
how to apply the asset base, the Apply Asset Base phase of DAGAR is not covered in ODM.

8.3 Tailoring ODM for use with DAGAR

As discussed in [17], ODM can be tailored for an easier transition from an ODM Asset Base
Model to a DAGAR Asset Base Architecture. For transition to DAGAR, ODM model develop-
ment activities should be more focused with an early and continuing emphasis on the utility and
appropriateness of model information being filtered and interpreted from an architecture-centric
viewpoint. it is important that the description of features in the asset base model be approached
from an architectural perspective and that the elements that are included in the asset base dossier
include sufficient content to be able to determine the architectural implications of feature combi-
nations. There must have been a significant study made of the domain (including system that
include the domain), and a sufficient amount of information produced and organized into models,
that the architecture can be defined in terms of the models, and in terms of the expected and
planned customer needs for systems that will be created from the asset base. It should not be nec-
essary to return to-the exemplars or customers to determine relevance or make architectural deci-
sions.

Below are some further lessons learned about tailoring ODM for use with DAGAR:

* Establish domain architecture objectives and techniques early in the domain planning
process.

Product line development should take place with a clear understanding of what architectural
methods are to be employed. If it is necessary to delay final commitment to an architectural
method, at the very least domain model development staff should be aware of the alternatives
being considered. While ODM itself is not oriented toward a particular architectural method, .
model development activity should take place with an awareness of what architectural
method is planned or expected to be used.

* Keep in mind long-term goals when producing ODM descriptive domain models.

While it is important to gather sufficient domain information so that the breadth and depth of
domain functionality and requirements are understood, the development of these preliminary
models should not be viewed as an end in themselves. They should serve the goal of produc-
ing focused and effective descriptive feature models. In fact, it may be preferable to make
production of the three descriptive models selected by the demonstration project (Iexicon,
stakeholder and descriptive feature model) the primary emphasis of the domain modeling
effort. A domain concept model would only be developed as necessary to support the struc-
ture and content of the feature model. The role that the concept model serves in the ODM
process may be better served by an expanded Lexicon model.

* Choose appropriate model representations for each of the model types — different
models may be better understood and organized using simpler representations.

The demonstration project primarily used the RLF mechanism to store and organize domain
information. In particular, the domain lexicon model, the descriptive (and later the prescrip-
tive) feature model and the domain stakeholder model were all developed as RLF models.
For certain kinds of information, using a semantic formalism provided by a tool such as RLF
is an unnecessary complication that can delay the completion of these models. For example,
the lexicon, as a highly changeable list of terms and definitions, preferably linked so that
related terms can be accessed easily, is more naturally represented as a hypertext structure

119

8.3 Tailoring ODM for use with DAGAR STARS-PA19-5007/001/00

such as can be provided using HTML. With the most recent enhancement of the RLF to
become OpenRLF, with a complete Web browser interface and easy connectivity to other
kinds of web-based data, the lexicon could be managed as pure HTML text with appropriate
links from and to RLF models.

* Look for, and carefully analyze, exemplar architectural material.

Older systems are not likely to come equipped with system architecture diagrams or CASE
tool databases where exemplar architectural information is likely to be found. However, it
should be possible to examine existing artifacts to locate and extract information about how
the system is put together and how its de facto package of services is made available to users
of the system. Note that users may be human operators or other tools or other system compo-
nents. Where the information may not exist directly, it may be available in the heads of sys-
tem developers and while it may take some doing to track down and interview development
staff, the payoft for such an effort can be enormous. While it will always take a significant
effort to look at old code or documentation, if care is taken not to drown in a sea of detail, a
controlled amount of reverse engineering can lead to useful system level views of the exem-
plar architectures. In comparing these views to one another, valuable insight into domain
commonality and variability will be obtained. Such insight will inform and guide the process
of creating the domain architecture, at least in its early phases.

e Consider the use of SAAM (Software Architecture Analysis Method) diagrams as a
means of finding a common representation for multiple system architectures.

SAAM [8] describes work at the SEI aimed at looking at families of related systems (domain
exemplars in ODM terms) and providing pictorial representations of the large-scale architec-
tural elements within these systems. Once the exemplar system structures have been
expressed using a particular notation, it is significantly easier to compare and contrast them
and thereby see what has “worked” architecturally in the past within the chosen domain. It ‘
may be possible to use the SAAM diagrammatic formalism to derive a generic system archi-
tecture that includes those common service groups and boundaries that were seen during
analysis of the exemplar systems. Where significant variability exists, the generic architec-
ture can leave the corresponding architecture segment as undefined. While the RLF is not
useful for drawing such SAAM diagrams, it is useful for modeling the interconnection

_between, and providing access to, a collection of such diagrams for various systems and sys-
tein views. Through the RLF action mechanism, the diagrams themselves may be viewed by
invoking the corresponding viewing program.

e While draft versions of the Domain Lexicon and Stakeholder models may be the best
early models to produce, it is never too soon to think about feature models during the
early weeks of domain analysis and modeling.

By concentrating on identifying interesting architecture structure and communication meth-
ods early in domain modeling, it will be less likely that domain modeling will be pursued for
its own sake wherein interesting domain information tidbits are identified and organized into
model structure. Such activity is understandable if domain education is a principal purpose
for doing domain modeling. If the principal purpose is the production of a product line archi-
tecture, every effort should be taken to minimize the amount of peripheral information that is
examined and modeled. By being feature conscious from the very beginning, extraneous
information will be easier to recognize and skip over.

120

STARS-PA19-S007/001/00 8.3 Tailoring ODM for use with DAGAR

* By performing the tasks of domain analysis and modeling, project staff will over time
become reliable domain informants themselves especially in regard to architectural
concerns.

In doing the comparative analysis that is the hallmark of domain engineering methodology,
domain engineers will become sufficiently expert that their views of desirable architectural
organization and interconnection may point the way to possible product line architecture
decisions and configurations. Some of these insights can be quite novel in comparison with
existing systems. In fact, innovation modeling is one cornerstone of ODM. During domain
engineering, staff must be open to the occurrence of these insights. Certainly all such insights
or novel ideas should be recorded for later careful deliberation and possible verification of
workability or utility by an external domain expert.

* Spend little time reviewing exemplar source material that is light on structural or fea-
ture combination information.

In rapidly moving from domain models to domain architecture, it will be necessary to quickly
review and categorize a large amount of data obtained from exemplar information sources
such as user manuals, requirements documents, design documents, expert interviews and of
course exemplar system code. While every source document will probably contain some use-
ful bit of information, many of them will be light on architecturally relevant information:
how things are put together, how system elements communicate with one another, how fea-

" ture/functional elements are bundled together or co-located within the same or affiliated sec-
tions of system code, what features/services are actually available across the system element
interfaces, etc. With experience, the domain engineer will be able to quickly tell what infor-
mation sources are likely repositories of useful information and which ones merely repeat
what is already known or contain non-useful sorts of information.

e Complete an early version of the prescriptive feature model and determine whether the
resulting model structure appears suitable for use in deriving a product line architec-
ture.

While there is a natural transition from descriptive modeling to prescriptive modeling, it is
not necessary to wait until the period allocated to descriptive feature modeling has been com-
pleted. The events outlined in the ODM process are not meant to be viewed or executed
sequentially and in a shortened and focused domain modeling activity, some degree of paral-
lelism is a necessary consequence. If the descriptive feature model presents an “as-is” view
of the space of domain features (including innovative derivations of a set of “what-if” fea-
tures), the prescriptive feature model should present the set of “to-be” features for the product
line. It will help the process of determining the planned feature set if several drafts of the set
are produced at suitable intervals within the scheduled model development period. Continu-
ing with this suggestion of early model refinement, an effort to develop an early draft
DAGAR domain architecture to which elements of the prescriptive feature have been
mapped is also advisable.

121

8.3 Tailoring ODM for use with DAGAR STARS-PA19-S007/001/00

122

STARS-PA19-S007/001/00

Appendix A: DAGAR Process Model

This appendix presents the DAGAR process modeled using the Process Tree and IDEF, nota-
tions. The full Process Tree diagram and the set of IDEF) diagrams appear on the pages that fol-
low. The order in which the IDEF,, diagrams appear is consistent with the hierarchical process
decomposition structure of DAGAR and should be straightforward to follow.

Organizations can use the Process Tree and IDEF; model directly as a basis for modeling
DAGAR in more detail. They can also adapt the processes and information availability to address
their specific needs, or they can integrate the model (or some adaptation thereof) with existing
IDEF, process models.

Process Trees were developed on the Army/Lockheed Martin Tactical Defense Systems STARS
Demonstration Project to depict multiple levels of functional decomposition of a process in a hier-
archical, graphical representation. A Process Tree decomposition appears as activities connected
by arrows. Arrows decompose an activity to its subactivities. Process Trees provide a convenient
way of navigating complex process decompositions. Nodes within Process Trees are used to
index into the DAGAR IDEF, Diagrams.

IDEF,, is becoming an increasingly popular process modeling notation, but not all readers of this
document may be familiar with it. IDEF, is based on the Structured Analysis and Design Tech-
nique (SADT) — a graphical approach to system description.

An IDEF,, Activity Diagram contains one level of decomposition of a process. Boxes within the
diagram depict the subactivities of the parent activity named by the diagram. Arrows between the
boxes depict availability of work products to activities. Arrows entering the left side of a box are
inputs to an activity. Arrows exiting the right side of a box are outputs from an activity. Arrows
entering the top of a box are controls that regulate the activity. Arrows entering the bottom of a
box are mechanisms that support the activity.

Note that a sequential ordering of boxes in the diagram does not imply a sequential flow of con-
trol between the activities. In many cases activities can be performed in parallel. Often feedback

from a latter activity will result in returning to a previous activity and revising the work products
produced.

See [10] and [14] for more details on IDEF, syntax and semantics.

123

STARS-PA19-S007/001/00

s[eusjew)se} pue selpoq suojjesypads
uopejuawinoop jusuodwoo jusuodwoo
yosse dojeas(] dofereq dojersg

uoneyuswadwi
ainonujseljul syesse aseq
wawsidw) juswe|dwj jesse ueld

sweibelp uoneoyoads

aseq josse aimos)yose ainjoejyore
uonejuswa|duy awelduwy sesl) dojereq
wa)sAsqns
soseo)sg) Oleidusy meDDm <
Addy esodwo) sfeusjew 1se) pue suonduosep asnjosyyole
uojjejuswINoop wesl |19A8| doy
uonEjUBWNOOP mwww mwmmm mo 1osse dojeneq dojensq dojereq
iojey “uely
aseq jasse alnjosyiyole eseq
Addy 19SSk auye(

ssad04d Hyova Ajddy

124

STARS-PA19-S007/001/00

MFINNN 'HLLLL 0 :HJON
14004
S108JILIR
w)SAS
L Iejdwoxyg
d <
woIsAsqng < MWM&Q <
A1ddy ﬁ IQ1SSOp
H A Vﬁ aseq 19SSy
— S
SIUTRIISUOD SIUTBIISUOD $92IN0S3I [opow
QINIOANYIIY A3o[ouyday, 109f01g 9seq 19SSy

dop

LXHIINOD

125

STARS-PA19-S007/001/00

ssaocold Yy ov Lddy T1LIL 0 HAAON
4Ddd
- ~
wsAsqng ¢———— aseq josse (€ .
1ddy oseq| SIUTENSUOD
198SY jossy
\ \N z ¥ SioejnJe
oseq [¢ WIoISAS
1 sz [4 — rejduoxyg
N
amonnserjul | SI9SSY | Juswisrduuy
aseq 19SSy A A
sjuowaIinbalx 7 Y
QINOANIYOIE | AISS0p
uopeorddy ERET RN aseq 9sBQ 19SSV
aseq 19ssy | 19sse aune(q)
\
—
SHUTRINSUOD $921N0SA1 SIUTRIISUOD [opow
A3ojouyoay, 100f01g QIMOAIYOTY 9SBQ 19SSV

&3
J1XdINOD

126

STARS-PA19-5007/001/00

~gagWnN|

A |

2INJOSMOTFE ISB(198Se UIJ(] I HAON
HOad
N
uoneIUAWNO0OpP h
INONIYIIY
€1 ISISSOp
QIN09)IYdIe S[eLojeW 159) pue [asBQq 19SSV
9seq 19SSy , uoneuowinoop [« N
VI ampyore [¢ A
A dopesag
S[RLIoIRW A —
1S9L suondrosap |« ~
suondLosap wpeal e
wesy doreasg
X
suoneorjoads
QINJOANOIY
1
g L QIN309IYOIR [epow
2IN309)IyoIR [949] 9SEQ JosSY
feaspdoy, | doydopaseqg
SIUTEIISUOD
QINJOANIYOIY
|
O
5]
JLXALNOD

127

STARS-PA19-S007/001/00

“mmmzszi ampaiyore [oA9] doy dojeae@ LLIL 't ‘HAON
4D0d4d
QIN)OAIYII.
Pa9r dog, NI
Ul
sweiderp [¢ 0
y a1moayore [R
\i aear) [¢ B
A
sureigeip
AINJOANYOIY
uoneoyrdads
IOy
4
L Tl
N N uonedyoads < [epow
i 1IN0 OIe 9sBQ JOSSY
J7 swipeoy doeseQ
\ 7'y
sjuduodwo)
\
SJUTRISUOD
2INJOANYOIY
1
-
B
“LXHLNOD

128

STARS-PA19-S007/001/00

MFINON oseqesse juowodu] HILLIL (4 ‘HAON
4Dda4d
A
SJUTRISUOD H
$ENN < 4
€T
e <
AIn)onIIseIyuf
2IMONI)SBIJUl A[W jwowopdwy [$
9seq 19SSV A
) 4
& sjoRjIIE
< WISAS
S1aSSY <« slesse | meduwoxyg
juowrduay
1N IYIoIR
ueyd % aseq 19SSy
uonrjuawa[dunt
IENN VAN IR
L uonejuowa[durr fq—
ue[d 7597 pUE UOBITSWNOO(] aseq 1osse _ I9ISSOp
Teid ue 9SBQ 19SSV
1d voneuswadwr a1njoNNSLIJU] Id
i
U
ﬁ S9[NpaYos
[epows SJUTRIISUOD §221N0$3I yopeoydde
seq 19SSy K3ojouyoa], SRETIOR% | IoW0ISn))
O
E3
]
:LXALNOD

. @

129

STARS-PA19-5007/001/00

B

NIENAN stosse uowodwy ELLIL| 7T HAON
S[eLR)ew HDdHd
159} pue
UOHBIUSWNIO0P N
198y
AN
AN
AN €TT
AN s[eLIofewr |
SENA AN 189} pue)
UOIBIUSWINDO0P | N
josse dojaaa(g
A A
1 2
) 4
7Tt ¢ y sjoeJnIe
L AP0 g \ woIsAs
~ 4 o
$a1poq | Yueuodwod |4 ~ rejdwoxyg a
yuauodwoy | dofeasq
\ 4
17T
suoneooads [€
r . w' Al\
suoneoyyoads | HULUOAWO9 QIMO3YOIe
1usuodwon) dopaasg as8q 19SSV
uepd
ue(d 159) PUR UONBIUSWINIO uonejuewa|dwl
1 1P ne) ad 135SV
-
E3
-
:LXALNOD

STARS-PA19-5007/001/00

SAHENNN _

aseq josse A[ddy ‘ALLIL € ‘HAON
4Dd4d
uoneBILIWNIOP L
wR)sAsqng
\,
£ AJ./)
uIeIsAsqng uoneuawnoop [¢ ~
Iofie L
A
suodalr ve
s[qnon €= a 2
aseq 19ssy Y $9sBD
1593 A1ddy v
A €€
/ uoneusws[dur |¢ N
wosAsqng wd)sAsqns <
suodax rIAUA) \ 4
ISoL a3
uonenba | wasAsqns [¢ ™
wdysdsqng | 9sodwo)
I'e —
L H H aseq 1asse Jo AW 19SSV
uerd uoneordde | uoueoydde
aseq 1ossy ueld
sjuawarnbax
WIDISAS
voneorddy
E3
O
O
JLXHINOD

. @

131

STARS-PA19-S007/001/00

132

STARS-PA19-S007/001/00 References

[1]

[2]

[3]

[4]

(5]

[6]

[7]

(8]

[9]

[10]

(11]

[12]

[13]

[14]

References!

Batory, Don., “le: A Type Expression Language” Loral Federal Systems/University of
Texas Tech. Report ADAGE-UT-93-02. May 1993.

" Batory, Don., “Software System Generators, Architectures and Reuse” Tutorial Present-

ed At The 3rd International Conference On Software Reuse, Rio de Janiero, Brazil, 2
November 1994,

Batory, D., Coglianesi, L., Goodwin, M., and Shafer, S. “Créating Reference Architec-
tures: An Example from Avionics,” Proceedings of ACM-SIGSOFT Symposium on Soft-
ware Reusability (SSR’95), Seattle, WA, April 1995.

Batory D., and O’Malley, S. “The Design and Implementation of Hierarchical Soft-
ware Systems with Reusable Components.” ACM Trans. Software Eng. and Methodolo-
gy. October 1992. pp. 355-398.

Batory, D., Singhal, V., Thomas, J., Dasari, S., Geraci, B., Sirkin, M.“The GenVoca

- Model of Software-System Generators,” IEEE Software, September 1994, pp 89-94.

Goguen, J. “Reusing and Interconnecting Software Components.” IEEE Computer. Feb-
ruary 1986.

Habermann, A. “Modularization and Hierarchy in a Family of Operating Systems.”
Camegie Mellon University Tech. Report CS-78-101. February 1978.

Kazman, Rick, et al., “SAAM: A Method for Analyzing the Properties of Software Ar-
chitectures.” Proceedings of the Sixteenth International Conference on Software En-
gineering, May 1994,

Klingler, Carol D., and Schwarting, Dan, “A Practical Approach to Process Defini-
tion,” Proceedings of the Seventh Annual Software Technology Conference, Salt Lake
City, Utah, April 1995.

Marca, David A., and McGowan, Clement L., SADT, Structured Analysis and Design
Technique. McGraw-Hill, New York, NY, 1988.

Moore, G. Crossing the Chasm: Marketing and Selling Technology Products to Main-
stream Customers. Harper Business, New York NY, 1991.

Parnas, D. L. “On the Design and Development of Program Families.” IEEE Trans.
Software Engineering. March 1976.

Sirkin, M. A Software System Generator for Data Structures. Doctoral Dissertation.
University of Washington, Seattle. 1994.

Softech Inc., Integrated Computer-Aided Manufacturing (ICAM) Architecture Part II.
Volume IV - Function Modeling Manual (IDEF;)). Technical Report AFWAL-TR-81-

4023 Volume IV, Materials Laboratory (AFWAL/MLTC), AF Wright Aeronautical
Laboratories (AFSC), Wright-Paterson AFB, Dayton, Ohio, June 1981.

1. STARS documents can be obtained electronically from ASSET and in hard copy from DTIC.

133

References STARS-PA19-S007/001/00

[15]
[16]
[17]

[18]

[19]
120]

[21]

[22]

[23]

Software Technology for Adaptable, Reliable Systems (STARS), Architecture Configu-
ration Assistant Users Manual. Technical Report STARS-PA19-S001/003/00, January

1996.

Software Technology for Adaptable, Reliable Systems (STARS), Army STARS Dem-
onstration Project Experience Report. Technical Report STARS-AC-A011R/003/02,

. April 1996.

Software Technology for Adaptable, Reliable Systems (STARS), Bridging the Gap Be-
tween Domain Modeling and Domain Architecture Definition. Technical Report

STARS-PA19-S004/001/00, March 1996

Software Technology for Adaptable, Reliable Systems (STARS), EDGE Users Manual,
Version 2.1. Technical Report STARS-PA19-S005R1/002/00, April 1996.

Software Technology for Adaptable, Reliable Systems (STARS), Enhanced Domain
Generation Environment (EDGE) Source Code Release Version 2.1, SunOS Implemen-
tation. Version Description Document STARS-PA19-S006R1/001/00, April 1996.

Software Technology for Adaptable, Reliable Systems (STARS), Organization Domain
Modeling (ODM) Guidebook, Version 1.0. Technical Report STARS-VC-A023/011/
00, March 1995.

Software Technology for Adaptable, Reliable Systems (STARS), Reuse Library Frame-

- work (RLF), Version 4.2, User’s Manual. Technical Report, June 1995.

Software Technology for Adaptable, Reliable Systems (STARS), STARS Conceptual
Framework for Reuse Processes (CFRP), Vulume I: Definition, Version 3.0. Technical
Report STARS-VC-A018/001/00, October 1993.

Solderitsch, J., Wickman, G., Kweder, D., Horton, M., “An Architecture and Generator
for an Army IEW Domain,” Proceedings of the Seventh Annual Software Technology
Conference, Salt Lake City, Utah, 12 April 1995.

134

